If-n-is-positive-integer-prove-that-the-cofficient-of-x-2-and-x-3-in-the-expansion-of-x-2-2x-2-n-are-2-n-1-n-2-and-2-n-1-n-n-1-1-3- Tinku Tara June 3, 2023 Permutation and Combination 0 Comments FacebookTweetPin Question Number 9573 by lepan last updated on 17/Dec/16 Ifnispositiveintegerprovethatthecofficientofx2andx3intheexpansionof(x2+2x+2)nare2n−1.n2and2n−1n(n−1)13. Commented by sou1618 last updated on 17/Dec/16 a,b,c=0,1,2,3….m(,n)=1,2,3….kxm=∑(a,b,c){(x2)a×(2x)b×2c×nCa×n−aCb×n−a−bCc}k=cofficientofxmm=2a+b+0ca+b+c=nn−a−bCc=cCc=1//////[kx2]m=2⇒(a,b,c)=(1)(1,0,n−1),(2)(0,2,n−2)(1)k1x2=(x2)1×(2x)0×(2)n−1×nC1×n−1C0⇒k1=2n−1×n(2)k2x2=(x2)0×(2x)2×2n−2×nC0×nC2⇒k2=2n×n(n−1)2=2n−1(n2−n)⇒k=k1+k2=2n−1(n2−n+n)=2n−1n2//////[kx3]m=3⇒(a,b,c)=(1)(1,1,n−2),(2)(0,3,n−3)(1)k1x3=(x2)1×(2x)1×2n−2×nC1×n−1C1⇒k1=2×2n−2×n×(n−1)=2n−1(n2−n)(2)k2x3=(x2)0×(2x)3×2n−3×nC0×nC3⇒k2=23×2n−3×n(n−1)(n−2)6=2n−1(n2−n)(n−2)3⇒k=k1+k2=2n−1(n2−n)(1+n−23)=2n−1(n−1)n(n+1)3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-75104Next Next post: the-expression-ax-2-bx-c-is-divisible-by-x-1-has-reminder-2-when-divided-by-x-1-and-has-reminder-8-when-divided-by-x-2-find-the-value-of-a-b-and-c- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.