Menu Close

If-n-is-positive-integer-prove-that-the-cofficient-of-x-2-and-x-3-in-the-expansion-of-x-2-2x-2-n-are-2-n-1-n-2-and-2-n-1-n-n-1-1-3-




Question Number 9573 by lepan last updated on 17/Dec/16
If n is positive integer prove that   the cofficient of x^(2 ) and x^3  in the   expansion of (x^2 +2x+2)^n  are 2^(n−1) .n^2   and 2^(n−1) n(n−1)(1/3).
Ifnispositiveintegerprovethatthecofficientofx2andx3intheexpansionof(x2+2x+2)nare2n1.n2and2n1n(n1)13.
Commented by sou1618 last updated on 17/Dec/16
a,b,c=0,1,2,3.... m(,n)=1,2,3....    kx^m =Σ_((a,b,c)) {(x^2 )^a ×(2x)^b ×2^c × _n C_a × _(n−a) C_b ×_(n−a−b) C_c }    k=cofficient of x^m     m=2a+b+0c    a+b+c=n     _(n−a−b) C_c = _c C_c =1    // // //   [kx^2 ]    m=2 ⇒ (a,b,c)=^((1)) (1,0,n−1),^((2)) (0,2,n−2)    (1)k_1 x^2 =(x^2 )^1 ×(2x)^0 ×(2)^(n−1) ×_n C_1 ×_(n−1) C_0       ⇒k_1 =2^(n−1) ×n    (2)k_2 x^2 =(x^2 )^0 ×(2x)^2 ×2^(n−2) ×_n C_0 ×_n C_2       ⇒k_2 =2^n ×((n(n−1))/2)=2^(n−1) (n^2 −n)   ⇒k=k_1 +k_2 =2^(n−1) (n^2 −n+n)           =2^(n−1) n^2     // // //  [kx^3 ]    m=3 ⇒ (a,b,c)=^((1)) (1,1,n−2),^((2)) (0,3,n−3)    (1)k_1 x^3 =(x^2 )^1 ×(2x)^1 ×2^(n−2) ×_n C_1 ×_(n−1) C_1       ⇒k_1 =2×2^(n−2) ×n×(n−1)=2^(n−1) (n^2 −n)    (2)k_2 x^3 =(x^2 )^0 ×(2x)^3 ×2^(n−3) ×_n C_0 ×_n C_3       ⇒k_2 =2^3 ×2^(n−3) ×((n(n−1)(n−2))/6)=2^(n−1) (((n^2 −n)(n−2))/3)    ⇒k=k_1 +k_2 =2^(n−1) (n^2 −n)(1+((n−2)/3))           =2^(n−1) (((n−1)n(n+1))/3)
a,b,c=0,1,2,3.m(,n)=1,2,3.kxm=(a,b,c){(x2)a×(2x)b×2c×nCa×naCb×nabCc}k=cofficientofxmm=2a+b+0ca+b+c=nnabCc=cCc=1//////[kx2]m=2(a,b,c)=(1)(1,0,n1),(2)(0,2,n2)(1)k1x2=(x2)1×(2x)0×(2)n1×nC1×n1C0k1=2n1×n(2)k2x2=(x2)0×(2x)2×2n2×nC0×nC2k2=2n×n(n1)2=2n1(n2n)k=k1+k2=2n1(n2n+n)=2n1n2//////[kx3]m=3(a,b,c)=(1)(1,1,n2),(2)(0,3,n3)(1)k1x3=(x2)1×(2x)1×2n2×nC1×n1C1k1=2×2n2×n×(n1)=2n1(n2n)(2)k2x3=(x2)0×(2x)3×2n3×nC0×nC3k2=23×2n3×n(n1)(n2)6=2n1(n2n)(n2)3k=k1+k2=2n1(n2n)(1+n23)=2n1(n1)n(n+1)3

Leave a Reply

Your email address will not be published. Required fields are marked *