Menu Close

If-P-1-P-2-P-3-will-be-taken-as-point-in-an-Argand-diagram-representing-complex-number-Z-1-Z-2-Z-3-and-point-P-1-P-2-P-3-is-an-equalateral-triangle-show-that-Z-2-Z-3-2-Z-3-Z-1-




Question Number 77991 by peter frank last updated on 12/Jan/20
If  P_1   P_2   P_3   will be taken  as point in an Argand  diagram representing  complex number  Z_1 ,Z_2 ,Z_3   and point  P_(1 ) ,P_2 ,P_3  is an equalateral  triangle.show that  (Z_2 −Z_3 )^2 +(Z_3 −Z_1 )^2 +(Z_1 −Z_2 )^2 =0
IfP1P2P3willbetakenaspointinanArganddiagramrepresentingcomplexnumberZ1,Z2,Z3andpointP1,P2,P3isanequalateraltriangle.showthat(Z2Z3)2+(Z3Z1)2+(Z1Z2)2=0
Answered by mind is power last updated on 13/Jan/20
the equality is symetrice in sens of   P(z_1 ,z_2 ,z_3 )=(z_1 −z_2 )^2 +(z_2 −z_3 )^2 +(z_1 −z_3 )^2 =p(z_1 ,z_3 ,z_2 ).....  P_1 P_2 P_3   equalateral ⇒((z_3 −z_2 )/(z_3 −z_1 ))=e^((iπ)/3) ,we can chose this   cause of the symetri      ⇒z_3 =((z_2 −z_1 e^((iπ)/3) )/(1−e^((iπ)/3) ))=(z_2 −z_1 e^((iπ)/3) )e^((iπ)/3)   z_3 =z_2 e^((iπ)/3) −z_1 e^((2iπ)/3)   z_3 −z_2 =(z_2 −z_1 )e^((2iπ)/3)   z_3 −z_1 =(z_2 −z_1 )e^((iπ)/3)   (z_3 −z_2 )^2 +(z_3 −z_1 )^2 +(z_1 −z_2 )^2 =(z_2 −z_1 )^2 e^((4iπ)/3) +(z_2 −z_1 )^2 e^((2iπ)/3) +(z_2 −z_1 )^2   letj=e^((2iπ)/3)   =(z_2 −z_1 )^2 (1+j+j^2 )  since j^2 +j+1=0  ⇒(z_3 −z_2 )^2 +(z_3 −z_1 )^2 +(z_2 −z_1 )^2 =0
theequalityissymetriceinsensofP(z1,z2,z3)=(z1z2)2+(z2z3)2+(z1z3)2=p(z1,z3,z2)..P1P2P3equalateralz3z2z3z1=eiπ3,wecanchosethiscauseofthesymetriz3=z2z1eiπ31eiπ3=(z2z1eiπ3)eiπ3z3=z2eiπ3z1e2iπ3z3z2=(z2z1)e2iπ3z3z1=(z2z1)eiπ3(z3z2)2+(z3z1)2+(z1z2)2=(z2z1)2e4iπ3+(z2z1)2e2iπ3+(z2z1)2letj=e2iπ3=(z2z1)2(1+j+j2)sincej2+j+1=0(z3z2)2+(z3z1)2+(z2z1)2=0
Answered by MJS last updated on 13/Jan/20
start with  P_(j+1) ^� = (((acos (α+((2π)/3)j))),((asin (α+((2π)/3)j))) ) ; j=0, 1, 2  obviously this gives an equilateral triangle  for any value of α  now shift by s^→ = ((p),(q) )  ⇒ P_(j+1) =P_(j+1) ^� +s^→ = (((p+acos (α+((2π)/3)j))),((q+asin (α+((2π)/3)j))) ) ; j=0, 1, 2  ⇒  Z_1 =p+acos α +i(q+asin α)  Z_2 =p+acos (α+((2π)/3)) +i(q+asin (α+((2π)/3)))  Z_3 =p+acos (α+((4π)/3)) +i(q+asin (α+((4π)/3)))  cos (α+((2π)/3)) =−((cos α +(√3)sin α)/2)  sin (α+((2π)/3)) =(((√3)cos α −sin α)/2)  cos (α+((4π)/3)) =−((cos α −(√3)sin α)/2)  sin (α+((4π)/3)) =−(((√3)cos α +sin α)/2)  let u=cos α ∧v=sin α  Z_1 =p+au+i(q+av)  Z_2 =p−(a/2)(u+(√3)v)+i(q+(a/2)((√3)u−v))  Z_3 =p−(a/2)(u−(√3)v)+i(q−(a/2)((√3)u+v))  (Z_1 −Z_2 )^2 =((((√3)a)/2)(((√3)u+v)−i(u−(√3)v)))^2 =  =((3a^2 )/2)((u^2 +2(√3)uv−v^2 )−i((√3)u^2 −2uv−(√3)v^2 ))  (Z_1 −Z_3 )^2 =((((√3)a)/2)(((√3)u−v)+i(u+(√3)v)))^2 =  =((3a^2 )/2)((u^2 −2(√3)uv−v^2 )+i((√3)u^2 +2uv−(√3)v^2 ))  (Z_2 −Z_3 )^2 =((√3)a(−v+iu))^2 =  =3a^2 ((v^2 −u^2 )−2iuv)  adding them gives 0
startwithP¯j+1=(acos(α+2π3j)asin(α+2π3j));j=0,1,2obviouslythisgivesanequilateraltriangleforanyvalueofαnowshiftbys=(pq)Pj+1=P¯j+1+s=(p+acos(α+2π3j)q+asin(α+2π3j));j=0,1,2Z1=p+acosα+i(q+asinα)Z2=p+acos(α+2π3)+i(q+asin(α+2π3))Z3=p+acos(α+4π3)+i(q+asin(α+4π3))cos(α+2π3)=cosα+3sinα2sin(α+2π3)=3cosαsinα2cos(α+4π3)=cosα3sinα2sin(α+4π3)=3cosα+sinα2letu=cosαv=sinαZ1=p+au+i(q+av)Z2=pa2(u+3v)+i(q+a2(3uv))Z3=pa2(u3v)+i(qa2(3u+v))(Z1Z2)2=(3a2((3u+v)i(u3v)))2==3a22((u2+23uvv2)i(3u22uv3v2))(Z1Z3)2=(3a2((3uv)+i(u+3v)))2==3a22((u223uvv2)+i(3u2+2uv3v2))(Z2Z3)2=(3a(v+iu))2==3a2((v2u2)2iuv)addingthemgives0
Commented by mind is power last updated on 13/Jan/20
hello sir Mjs its been long times  hope all going good for you
hellosirMjsitsbeenlongtimeshopeallgoinggoodforyou
Commented by MJS last updated on 13/Jan/20
thank you, I hope 2020 is going to be a good  year for you too
thankyou,Ihope2020isgoingtobeagoodyearforyoutoo
Commented by mind is power last updated on 13/Jan/20
thanx sir
thanxsir

Leave a Reply

Your email address will not be published. Required fields are marked *