Menu Close

If-p-and-q-are-the-roots-for-the-x-2-a-1-x-a-5-2-0-The-minimum-value-of-p-2-q-2-is-




Question Number 10933 by Joel576 last updated on 02/Mar/17
If  p  and  q  are the roots for the  x^2  − (a + 1)x + (−a − (5/2)) = 0  The minimum value of  p^(2 ) + q^2   is ...
Ifpandqaretherootsforthex2(a+1)x+(a52)=0Theminimumvalueofp2+q2is
Answered by ridwan balatif last updated on 02/Mar/17
there 2 solution to solve this question  x^2 −(a+1)x+(−a−(5/2))=0  p+q=a+1 & p×q=−(a+(5/2))  let p^2 +q^2 =k,then  k=(p+q)^2 −2p×q  k=(a+1)^2 −2×{−(a+(5/2))}  k=a^2 +2a+1+(2a+5)  k=a^2 +4a+6  ∗first solution  k will minimum if k′=0  k′=0  2a+4=0→a=−2, so  k=(−2)^2 +4×(−2)+6=2  ∗∗second solution  k=a^2 +4a+6  k=(a+2)^2 +2  if we want k is minimum, (a+2)^2  must be zero  so k=0+2=2
there2solutiontosolvethisquestionx2(a+1)x+(a52)=0p+q=a+1&p×q=(a+52)letp2+q2=k,thenk=(p+q)22p×qk=(a+1)22×{(a+52)}k=a2+2a+1+(2a+5)k=a2+4a+6firstsolutionkwillminimumifk=0k=02a+4=0a=2,sok=(2)2+4×(2)+6=2secondsolutionk=a2+4a+6k=(a+2)2+2ifwewantkisminimum,(a+2)2mustbezerosok=0+2=2
Commented by Joel576 last updated on 02/Mar/17
thank you very much
thankyouverymuch
Commented by Joel576 last updated on 02/Mar/17
thank you very much
thankyouverymuch
Answered by bahmanfeshki last updated on 02/Mar/17
p^2 +q^2 =S^2 −2P=(a+1)^2 +2a+5=a^2 +4a+6  minimum value=((4×1×6−4^2 )/(4×1))=2
p2+q2=S22P=(a+1)2+2a+5=a2+4a+6minimumvalue=4×1×6424×1=2

Leave a Reply

Your email address will not be published. Required fields are marked *