Menu Close

If-p-gt-1-and-q-gt-1-what-can-be-said-about-the-convergence-of-n-2-1-n-p-ln-n-q-a-always-converges-b-always-diverges-c-may-converges-or-diverges-




Question Number 134060 by benjo_mathlover last updated on 27/Feb/21
If p>1 and q>1 what can be  said about the convergence   of Σ_(n=2) ^∞  (1/(n^p .(ln n)^q )) ?  (a) always converges  (b) always diverges  (c) may converges or diverges
Ifp>1andq>1whatcanbesaidabouttheconvergenceofn=21np.(lnn)q?(a)alwaysconverges(b)alwaysdiverges(c)mayconvergesordiverges
Answered by mnjuly1970 last updated on 27/Feb/21
cauchy density test.     Σ_(k=1) ^∞ 2^k (1/(2^(kp) (ln2)^q k^q ))=(1/((ln2)^q ))Σ_(k=1) ^∞ (1/(2^(k(p−1)) k^q ))  Σ_(k=1) ((1/2^(p−1) ))^k ((1/k))^q   ...for (p>1,  q>1) is convergent
cauchydensitytest.k=12k12kp(ln2)qkq=1(ln2)qk=112k(p1)kqk=1(12p1)k(1k)qfor(p>1,q>1)isconvergent
Answered by mathmax by abdo last updated on 27/Feb/21
the sequence u_n =(1/(n^p (logn)^q )) decreaze to0  the serie have nature[of  ∫_e ^∞  (dt/(t^p (logt)^q ))  =_(logt =u)    ∫_1 ^∞  ((e^u  du)/(e^(pu) u^q )) =∫_1 ^∞  e^((1−p)u)  (du/u^q )  we have lim_(u→+∞) u^2  (e^(−(p−1)u) /u^q ) =lim_(u→+∞)   u^(2−q)  e^(−(p−1)u)  =0 ⇒  the integral is convergent ⇒the serie is cv.
thesequenceun=1np(logn)qdecreazeto0theseriehavenature[ofedttp(logt)q=logt=u1euduepuuq=1e(1p)uduuqwehavelimu+u2e(p1)uuq=limu+u2qe(p1)u=0theintegralisconvergenttheserieiscv.

Leave a Reply

Your email address will not be published. Required fields are marked *