Menu Close

if-p-x-is-a-polynomial-and-p-x-p-1-x-p-x-p-1-x-p-3-28-then-p-x-p-4-




Question Number 806 by 123456 last updated on 16/Mar/15
if p(x) is a polynomial and  p(x)p((1/x))=p(x)+p((1/x))  p(3)=28  then  p(x)=?  p(4)=?
ifp(x)isapolynomialandp(x)p(1x)=p(x)+p(1x)p(3)=28thenp(x)=?p(4)=?
Commented by 123456 last updated on 16/Mar/15
x=±1⇒(1/x)=±1  p(±1)p(±1)=p(±1)+p(±1)  [p(±1)]^2 −2p(±1)=0  p(±1)[p(±1)−2]=0  p(±1)=0∨p(±1)=2
x=±11x=±1p(±1)p(±1)=p(±1)+p(±1)[p(±1)]22p(±1)=0p(±1)[p(±1)2]=0p(±1)=0p(±1)=2
Commented by prakash jain last updated on 16/Mar/15
p(x)=Σ_(i=0) ^n a_i x^i   p(x)p((1/x))=p(x)+p((1/x))  Equating coefficients for x^(−n)   a_0 a_n =a_n ⇒a_0 =1  Equating coefficients for x^0   a_0 ^2 +a_1 ^2 +...+a_n ^2 =2a_0   a_1 ^2 +...+a_n ^2 =1         ....(i)  Equating coefficients for x^1   a_0 a_1 +a_1 a_2 +..+a_(n−1) a_n =a_1   a_1 a_2 +a_2 a_3 +..+a_(n−1) a_n =0  Equating coefficients for x^2   a_1 a_3 +a_2 a_4 +..+a_(n−2) a_n =0  Equating coefficent for x^(n−1)   a_0 a_(n−1) +a_1 a_n =a_(n−1)   a_0 =1 hence a_1 a_n =0  a_n ≠0 (poynomial of degree n) hence a_1 =0  So all coefficient (a_1 ...a_(n−1) )= 0.   From (i) a_n  =1  p(x)=1+x^n   p(x)p((1/x))=(1+x^n )(1+(1/x^n ))=1+x^n +(1/x^n )+1              =p(x)+p((1/x))  p(3)=28=1+3^n ⇒n=3  p(4)=1+4^3 =65
p(x)=ni=0aixip(x)p(1x)=p(x)+p(1x)Equatingcoefficientsforxna0an=ana0=1Equatingcoefficientsforx0a02+a12++an2=2a0a12++an2=1.(i)Equatingcoefficientsforx1a0a1+a1a2+..+an1an=a1a1a2+a2a3+..+an1an=0Equatingcoefficientsforx2a1a3+a2a4+..+an2an=0Equatingcoefficentforxn1a0an1+a1an=an1a0=1hencea1an=0an0(poynomialofdegreen)hencea1=0Soallcoefficient(a1an1)=0.From(i)an=1p(x)=1+xnp(x)p(1x)=(1+xn)(1+1xn)=1+xn+1xn+1=p(x)+p(1x)p(3)=28=1+3nn=3p(4)=1+43=65
Answered by prakash jain last updated on 16/Mar/15
See comments  p(x)=1+x^3   p(1)=2  p(−1)=0  p(4)=65
Seecommentsp(x)=1+x3p(1)=2p(1)=0p(4)=65

Leave a Reply

Your email address will not be published. Required fields are marked *