Menu Close

if-pi-2n-1-n-1-n-N-then-prove-that-tan-tan2-tan3-tan-n-2n-1-




Question Number 140338 by Arzoon last updated on 06/May/21
if θ=(π/(2n+1)), n≥1, n∈N ,then prove that:  tanθtan2θtan3θ∙ ∙ ∙ ∙ ∙ ∙ tan(nθ) = (√(2n+1))
$${if}\:\theta=\frac{\pi}{\mathrm{2}{n}+\mathrm{1}},\:{n}\geqslant\mathrm{1},\:{n}\in{N}\:,{then}\:{prove}\:{that}: \\ $$$${tan}\theta{tan}\mathrm{2}\theta{tan}\mathrm{3}\theta\centerdot\:\centerdot\:\centerdot\:\centerdot\:\centerdot\:\centerdot\:{tan}\left({n}\theta\right)\:=\:\sqrt{\mathrm{2}{n}+\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *