Menu Close

if-sec-x-tan-x-4-then-find-sin-x-




Question Number 76434 by benjo last updated on 27/Dec/19
if sec x − tan x = 4, then find   sin x.
$$\mathrm{if}\:\mathrm{sec}\:\mathrm{x}\:−\:\mathrm{tan}\:\mathrm{x}\:=\:\mathrm{4},\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\mathrm{sin}\:\mathrm{x}. \\ $$
Answered by john santu last updated on 27/Dec/19
using : sec^2 x−tan^2 x =1  (sec x+tan x)×(sec x−tan x)=1  sec x+tan x = (1/4), by elimination   the equation we get 2 sec x = ((17)/4)  cos x =(8/(17 )). so you will get sin x.
$${using}\::\:\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{tan}\:^{\mathrm{2}} {x}\:=\mathrm{1} \\ $$$$\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)×\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)=\mathrm{1} \\ $$$$\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}},\:{by}\:{elimination}\: \\ $$$${the}\:{equation}\:{we}\:{get}\:\mathrm{2}\:\mathrm{sec}\:{x}\:=\:\frac{\mathrm{17}}{\mathrm{4}} \\ $$$$\mathrm{cos}\:{x}\:=\frac{\mathrm{8}}{\mathrm{17}\:}.\:{so}\:{you}\:{will}\:{get}\:\mathrm{sin}\:{x}. \\ $$
Answered by MJS last updated on 27/Dec/19
sec x −tan x =4  ((1−sin x)/(cos x))=4 [⇒ cos x ≠0]  1−sin x =4(√(1−sin^2  x))  (1−sin x)^2 =16−16sin^2  x  sin^2  x −(2/(17))sin x −((15)/(17))=0  ⇒ sin x =−((15)/(17)) ∨ sin x =1  but sin x =1 ⇔ cos x =0 not allowed  ⇒ sin x =−((15)/(17))
$$\mathrm{sec}\:{x}\:−\mathrm{tan}\:{x}\:=\mathrm{4} \\ $$$$\frac{\mathrm{1}−\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}=\mathrm{4}\:\left[\Rightarrow\:\mathrm{cos}\:{x}\:\neq\mathrm{0}\right] \\ $$$$\mathrm{1}−\mathrm{sin}\:{x}\:=\mathrm{4}\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x}} \\ $$$$\left(\mathrm{1}−\mathrm{sin}\:{x}\right)^{\mathrm{2}} =\mathrm{16}−\mathrm{16sin}^{\mathrm{2}} \:{x} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}\:−\frac{\mathrm{2}}{\mathrm{17}}\mathrm{sin}\:{x}\:−\frac{\mathrm{15}}{\mathrm{17}}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}\:=−\frac{\mathrm{15}}{\mathrm{17}}\:\vee\:\mathrm{sin}\:{x}\:=\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{sin}\:{x}\:=\mathrm{1}\:\Leftrightarrow\:\mathrm{cos}\:{x}\:=\mathrm{0}\:\mathrm{not}\:\mathrm{allowed} \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}\:=−\frac{\mathrm{15}}{\mathrm{17}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *