Menu Close

If-sin-2A-sin-2B-Prove-that-tan-A-B-tan-A-B-1-1-




Question Number 74966 by ajfour last updated on 05/Dec/19
If  sin 2A=λsin 2B  Prove that  ((tan (A+B))/(tan (A−B)))=((λ+1)/(λ−1)) .
Ifsin2A=λsin2BProvethattan(A+B)tan(AB)=λ+1λ1.
Commented by Prithwish sen last updated on 05/Dec/19
((sin2A)/(sin2B)) = λ  ((sin2A+sin2B)/(sin2A−sin2B)) = ((λ+1)/(λ−1))  ((sin(A+B)cos(A−B))/(cos(A+B)sin(A−B))) = ((λ+1)/(λ−1))  ((tan(A+B))/(tam(A−B))) = ((𝛌−1)/(𝛌+1))  proved.
sin2Asin2B=λsin2A+sin2Bsin2Asin2B=λ+1λ1sin(A+B)cos(AB)cos(A+B)sin(AB)=λ+1λ1tan(A+B)tam(AB)=λ1λ+1proved.
Commented by ajfour last updated on 05/Dec/19
Thanks.
Thanks.
Answered by ajfour last updated on 05/Dec/19
sin [(A+B)+(A−B)]=λsin [A+B−(A−B)]  ⇒  sin (A+B)cos (A−B)+cos (A+B)sin (A−B)  −λ{sin (A+B)cos (A−B)−cos (A+B)sin (A−B)=0  dividing by cos (A+B)cos (A−B)  tan (A+B)+tan (A−B)       = λ{tan (A+B)−tan (A−B)  ⇒  ((tan (A+B))/(tan (A−B)))=((λ+1)/(λ−1)) .
sin[(A+B)+(AB)]=λsin[A+B(AB)]sin(A+B)cos(AB)+cos(A+B)sin(AB)λ{sin(A+B)cos(AB)cos(A+B)sin(AB)=0dividingbycos(A+B)cos(AB)tan(A+B)+tan(AB)=λ{tan(A+B)tan(AB)tan(A+B)tan(AB)=λ+1λ1.
Commented by Prithwish sen last updated on 05/Dec/19
Wow !
Wow!

Leave a Reply

Your email address will not be published. Required fields are marked *