Menu Close

If-sin-2cos-1-Prove-that-2sin-cos-2-




Question Number 7683 by new phone last updated on 08/Sep/16
If sin θ+2cos θ=1  Prove that 2sin θ−cos θ=2
Ifsinθ+2cosθ=1Provethat2sinθcosθ=2
Commented by sandy_suhendra last updated on 08/Sep/16
sinθ+^ 2cosθ=1  (sinθ+2cosθ)^2 =1^2   sin^2 θ+4sinθcosθ+4cos^2 θ=1  4sinθcosθ=1−sin^2 θ−4cos^2 θ    (2sinθ−cosθ)^2   =4sin^2 θ−4sinθcosθ+cos^2 θ  =4sin^2 θ−(1−sin^2 θ−4cos^2 θ)+cos^2 θ  =5sin^2 θ+5cos^2 θ−1  =5(sin^2 θ+cos^2 θ)−1  =5−1=4  so  (2sinθ−cosθ)=±2
sinθ+2cosθ=1(sinθ+2cosθ)2=12sin2θ+4sinθcosθ+4cos2θ=14sinθcosθ=1sin2θ4cos2θ(2sinθcosθ)2=4sin2θ4sinθcosθ+cos2θ=4sin2θ(1sin2θ4cos2θ)+cos2θ=5sin2θ+5cos2θ1=5(sin2θ+cos2θ)1=51=4so(2sinθcosθ)=±2

Leave a Reply

Your email address will not be published. Required fields are marked *