Menu Close

If-tan-x-1-tan-x-tan-2-x-dx-x-k-A-tan-1-k-tan-x-1-A-C-where-C-is-constant-of-integration-then-the-ordered-pair-k-A-is-equal-to-




Question Number 133004 by liberty last updated on 18/Feb/21
If ∫ ((tan x)/(1+tan x+tan^2 x)) dx = x−(k/( (√A))) tan^(−1) (((k tan x+1)/( (√A))))+C  where C is constant of integration.  then the ordered pair (k,A) is   equal to
Iftanx1+tanx+tan2xdx=xkAtan1(ktanx+1A)+CwhereCisconstantofintegration.thentheorderedpair(k,A)isequalto
Answered by EDWIN88 last updated on 18/Feb/21
 consider tan x = 1+tan^2 x+tan x−sec^2 x  I=∫ ((1+tan^2 x+tan x−sec^2 x)/(1+tan x+tan^2 x)) dx   I=∫1−((sec^2 x)/(1+tan x+tan^2 x)) dx   I=x−∫((sec^2 x)/(1+tan x+tan^2 x))dx  put u = tan x   I=x−∫ (du/(1+u+u^2 )) =x−∫ (du/((u+(1/2))^2 +(((√3)/2))^2 ))  I=x−(2/( (√3))) tan^(−1) (((u+(1/2))/((√3)/2)))+C  I=x−(2/( (√3)))tan^(−1) (((2tan x+1)/( (√3))))+C   we find → { ((k=2)),((A=3)) :} ⇒(k,A) = (2,3)
considertanx=1+tan2x+tanxsec2xI=1+tan2x+tanxsec2x1+tanx+tan2xdxI=1sec2x1+tanx+tan2xdxI=xsec2x1+tanx+tan2xdxputu=tanxI=xdu1+u+u2=xdu(u+12)2+(32)2I=x23tan1(u+1232)+CI=x23tan1(2tanx+13)+Cwefind{k=2A=3(k,A)=(2,3)

Leave a Reply

Your email address will not be published. Required fields are marked *