Menu Close

if-tan-xy-x-then-dy-dx-




Question Number 11011 by madscientist last updated on 06/Mar/17
if tan(xy)=x then (dy/dx)=
$${if}\:{tan}\left({xy}\right)={x}\:{then}\:\frac{{dy}}{{dx}}= \\ $$
Answered by mrW1 last updated on 06/Mar/17
xy=tan^(−1)  x  y=((tan^(−1)  x)/x)  (dy/dx)=−((tan^(−1)  x)/x^2 )+(1/(x(1+x^2 )))    way 2:  cos^2  (xy)=(1/(1+tan^2  (xy)))=(1/(1+x^2 ))    (1/(cos^2  (xy)))(y+x(dy/dx))=1  (dy/dx)=((cos^2  (xy)−y)/x)=(((1/(1+x^2 ))−y)/x)=(1/(x(1+x^2 )))−(y/x)=(1/(x(1+x^2 )))−((tan^(−1)  x)/x^2 )
$${xy}=\mathrm{tan}^{−\mathrm{1}} \:{x} \\ $$$${y}=\frac{\mathrm{tan}^{−\mathrm{1}} \:{x}}{{x}} \\ $$$$\frac{{dy}}{{dx}}=−\frac{\mathrm{tan}^{−\mathrm{1}} \:{x}}{{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$$ \\ $$$${way}\:\mathrm{2}: \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\left({xy}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\left({xy}\right)}=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\left({xy}\right)}\left({y}+{x}\frac{{dy}}{{dx}}\right)=\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{cos}^{\mathrm{2}} \:\left({xy}\right)−{y}}{{x}}=\frac{\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }−{y}}{{x}}=\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}−\frac{{y}}{{x}}=\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}−\frac{\mathrm{tan}^{−\mathrm{1}} \:{x}}{{x}^{\mathrm{2}} } \\ $$
Answered by bahmanfeshki last updated on 06/Mar/17
(xy′+y)(1+tan^2  (xy))=1  →y′=(1/x)((1/(1+x^2 ))−y)
$$\left({xy}'+{y}\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \:\left({xy}\right)\right)=\mathrm{1} \\ $$$$\rightarrow{y}'=\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }−{y}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *