Menu Close

If-tan2x-sin2x-b-and-tan2x-sin2x-a-prove-that-b-2-a-2-16ba-




Question Number 6655 by Tawakalitu. last updated on 09/Jul/16
If   tan2x − sin2x = b  and  tan2x + sin2x = a  prove that :   b^2  − a^(2 )  = 16ba
Iftan2xsin2x=bandtan2x+sin2x=aprovethat:b2a2=16ba
Commented by Yozzii last updated on 09/Jul/16
x=(π/8)⇒b=1−(1/( (√2))) ,a=1+(1/( (√2)))  ⇒16ab=16(1−(1/( (√2))))(1+(1/( (√2))))=8  b^2 −a^2 =(b−a)(b+a)=(((−2)/( (√2))))(2)=−2(√2)≠8  but (−2(√2))^2 =8⇒ (b^2 −a^2 )^2 =16ab???
x=π8b=112,a=1+1216ab=16(112)(1+12)=8b2a2=(ba)(b+a)=(22)(2)=228but(22)2=8(b2a2)2=16ab???
Answered by Yozzii last updated on 09/Jul/16
16ab=16(tan2x−sin2x)(tan2x+sin2x)  =16(tan^2 2x−sin^2 2x)  =16sin^2 2x((1/(cos^2 2x))−1)  =16sin^2 2x((1−cos^2 2x)/(cos^2 2x))  =16tan^2 2xsin^2 2x  =(4tan2xsin2x)^2   =((2tan2x)(2sin2x))^2   =((tan2x−sin2x+tan2x+sin2x)(tan2x−sin2x−tan2x−sin2x))^2   =((b+a)(b−a))^2   16ab=(b^2 −a^2 )^2
16ab=16(tan2xsin2x)(tan2x+sin2x)=16(tan22xsin22x)=16sin22x(1cos22x1)=16sin22x1cos22xcos22x=16tan22xsin22x=(4tan2xsin2x)2=((2tan2x)(2sin2x))2=((tan2xsin2x+tan2x+sin2x)(tan2xsin2xtan2xsin2x))2=((b+a)(ba))216ab=(b2a2)2
Commented by Tawakalitu. last updated on 09/Jul/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *