Menu Close

If-the-area-of-a-triangle-with-vertices-Z-1-Z-2-and-Z-3-is-the-absolute-value-of-the-number-i-determinant-Z-1-Z-1-1-Z-2-Z-2-1-Z-3-Z-3-1




Question Number 140446 by EnterUsername last updated on 07/May/21
If the area of a triangle with vertices Z_1 , Z_2  and Z_3  is  the absolute value of the number                                       λi   determinant ((Z_1 ,Z_1 ^� ,1),(Z_2 ,Z_2 ^� ,1),(Z_3 ,Z_3 ^� ,1))  then the value of 1/λ is equal to _____.
$$\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{vertices}\:{Z}_{\mathrm{1}} ,\:{Z}_{\mathrm{2}} \:\mathrm{and}\:{Z}_{\mathrm{3}} \:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lambda{i}\:\:\begin{vmatrix}{{Z}_{\mathrm{1}} }&{\bar {{Z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{Z}_{\mathrm{2}} }&{\bar {{Z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{Z}_{\mathrm{3}} }&{\bar {{Z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix} \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{1}/\lambda\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\_\_\_\_\_. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *