Menu Close

if-the-F-x-1-x-1-x-2t-F-t-dt-what-the-F-1-value-using-the-Leibnitz-formula-




Question Number 138407 by tugu last updated on 13/Apr/21
if the F(x)=(1/x)∫_1 ^x (2t−F ′(t))dt  ⇒ what the F ′(1) value using the Leibnitz formula.
iftheF(x)=1xx1(2tF(t))dtwhattheF(1)valueusingtheLeibnitzformula.
Answered by ajfour last updated on 13/Apr/21
F ′(x)=−((F(x))/x)+(1/x)[2x−F ′(x)]  (x+1)F ′(x)+F(x)=2x  xF ′(x)+F(x)=2x−F ′(x)  d[xF(x)]=[2x−F ′(x)]dx  xF(x)=x^2 −F(x)+c  F(x)=((x^2 +c)/(x+1))  xF(x)=(x^2 −1)−F(x)+F(1)  F(1)=1−x^2 +x^2 +c  F(1)=c+1=((c+1)/2)  ⇒  c=−1  F(1)=0  F(x)=((x^2 −1)/(x+1))=x−1  F ′(x)=1  ⇒ F ′(1)=1  ★  check  x(x−1)=∫_( 1) ^( x) (2t−1)dt  x(x−1)=x^2 −1−(x−1)  ⇒  x(x−1)=x(x−1) ✓
F(x)=F(x)x+1x[2xF(x)](x+1)F(x)+F(x)=2xxF(x)+F(x)=2xF(x)d[xF(x)]=[2xF(x)]dxxF(x)=x2F(x)+cF(x)=x2+cx+1xF(x)=(x21)F(x)+F(1)F(1)=1x2+x2+cF(1)=c+1=c+12c=1F(1)=0F(x)=x21x+1=x1F(x)=1F(1)=1checkx(x1)=1x(2t1)dtx(x1)=x21(x1)x(x1)=x(x1)
Commented by ajfour last updated on 13/Apr/21
ah!  nobody likes this..
ah!nobodylikesthis..

Leave a Reply

Your email address will not be published. Required fields are marked *