Menu Close

if-the-fibonacci-sequence-is-1-1-2-3-5-8-13-21-34-where-it-is-1-1-2-2-3-5-3-5-8-how-can-we-represent-this-sequence-in-summitation-notation-or-product-notation-




Question Number 3628 by madscientist last updated on 16/Dec/15
if the fibonacci sequence is   1,1,2,3,5,8,13,21,34...  where it is 1+1=2, 2+3=5, 3+5=8,...  how can we represent this sequence   in summitation notation Σ  or product notation Π?
ifthefibonaccisequenceis1,1,2,3,5,8,13,21,34whereitis1+1=2,2+3=5,3+5=8,howcanwerepresentthissequenceinsummitationnotationΣorproductnotationΠ?
Commented by 123456 last updated on 16/Dec/15
a_n =a_(n−1) +a_(n−2)   a_1 =1  a_2 =1  there also a explict form in terms of  φ=((1+(√5))/2) and Φ=((1−(√5))/2)
an=an1+an2a1=1a2=1therealsoaexplictformintermsofϕ=1+52andΦ=152
Commented by prakash jain last updated on 16/Dec/15
a_n =((∅^n −Φ^n )/( (√5)))
an=nΦn5
Answered by Filup last updated on 17/Dec/15
Fibonacci sequence:  T_n =T_(n−1) +T_(n−2)     Find common ratio:  r=φ=(T_n /T_(n−1) )=(T_(n−1) /T_(n−2) )  ((T_(n−1) +T_(n−2) )/T_(n−1) )=(T_(n−1) /T_(n−2) )  1+(T_(n−2) /T_(n−1) )=(T_(n−1) /T_(n−2) )  ∴1+(1/φ)=φ  φ^2 −φ−1=0  φ=((1+(√5))/2)     Φ=((1−(√5))/2)    nth fibonacci number:  φ_n =((φ^n −Φ^n )/( (√5)))    ∴Sum=Σ_(i=1) ^n φ_i =Σ_(i=1) ^n ((φ^i −Φ^i )/( (√5)))
Fibonaccisequence:Tn=Tn1+Tn2Findcommonratio:r=ϕ=TnTn1=Tn1Tn2Tn1+Tn2Tn1=Tn1Tn21+Tn2Tn1=Tn1Tn21+1ϕ=ϕϕ2ϕ1=0ϕ=1+52Φ=152nthfibonaccinumber:ϕn=ϕnΦn5Sum=ni=1ϕi=ni=1ϕiΦi5
Commented by Rasheed Soomro last updated on 17/Dec/15
Find common ratio:  r=φ=(T_n /T_(n−1) )=(T_(n−1) /T_(n−2) )  ?  (T_3 /T_2 )= (T_2 /T_1 )?  T_1 =T_2 =1 , T_3 =2  (2/1)=(1/1)?
Findcommonratio:r=ϕ=TnTn1=Tn1Tn2?T3T2=T2T1?T1=T2=1,T3=221=11?
Commented by Filup last updated on 17/Dec/15
′′ratio′′ isn′t a good word to use. Simply,  it′s the ratio that the sequence approaches  as n→∞    I belive that T_n φ≈T_(n+1)  for large n
ratioisntagoodwordtouse.Simply,itstheratiothatthesequenceapproachesasnIbelivethatTnϕTn+1forlargen
Commented by Rasheed Soomro last updated on 17/Dec/15
THαNK^S !
THαNKS!

Leave a Reply

Your email address will not be published. Required fields are marked *