Menu Close

if-the-range-of-f-x-y-sec-1-x-1-x-sec-1-y-1-y-xy-lt-0-is-a-b-and-a-b-equals-pi-10-then-is-eqal-to-




Question Number 68991 by pranay02 last updated on 17/Sep/19
if the range of f(x, y) = sec^(−1) (x+(1/x))+sec^(−1) (y+(1/y)), xy<0 is (a, b) and (a+b) equals ((λπ)/(10)), then λ is eqal to
iftherangeoff(x,y)=sec1(x+1x)+sec1(y+1y),xy<0is(a,b)and(a+b)equalsλπ10,thenλiseqalto
Answered by MJS last updated on 18/Sep/19
g(t)=sec^(−1)  (t+(1/t)) =cos^(−1)  ((t/(t^2 +1)))  (π/3)≤g(t)≤((2π)/3)  the minimum is at  ((1),((π/3)) )  the maximum is at  (((−1)),(((2π)/3)) )  t<0 ⇒ (π/2)<g(t)≤((3π)/2)  t>0 ⇒ (π/3)≤g(t)<(π/2)  ⇒ ((5π)/6)<f(x, y)<2π for xy<0  ((5π)/6)+2π=((17π)/6)=((λπ)/(10)) ⇒ λ=((85)/3)
g(t)=sec1(t+1t)=cos1(tt2+1)π3g(t)2π3theminimumisat(1π3)themaximumisat(12π3)t<0π2<g(t)3π2t>0π3g(t)<π25π6<f(x,y)<2πforxy<05π6+2π=17π6=λπ10λ=853

Leave a Reply

Your email address will not be published. Required fields are marked *