Menu Close

If-the-ratio-of-the-students-that-pass-a-test-to-those-that-fail-is-in-ratio-4-1-If-9-students-were-chosen-at-random-what-is-the-probability-that-exactly-7-passed-the-test-




Question Number 12156 by tawa last updated on 15/Apr/17
If the ratio of the students that pass a test to those that fail is in ratio 4:1,  If  9 students were chosen at random, what is the probability that exactly  7 passed the test.
$$\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{students}\:\mathrm{that}\:\mathrm{pass}\:\mathrm{a}\:\mathrm{test}\:\mathrm{to}\:\mathrm{those}\:\mathrm{that}\:\mathrm{fail}\:\mathrm{is}\:\mathrm{in}\:\mathrm{ratio}\:\mathrm{4}:\mathrm{1}, \\ $$$$\mathrm{If}\:\:\mathrm{9}\:\mathrm{students}\:\mathrm{were}\:\mathrm{chosen}\:\mathrm{at}\:\mathrm{random},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{exactly} \\ $$$$\mathrm{7}\:\mathrm{passed}\:\mathrm{the}\:\mathrm{test}. \\ $$
Answered by mrW1 last updated on 23/Apr/17
probability pass test p=(4/(4+1))=0.8  probability fail q=1−0.8=0.2    C_7 ^9 ×0.8^7 ×0.2^2 =36×0.8^7 ×0.2^2   =0.302=30.2%
$${probability}\:{pass}\:{test}\:{p}=\frac{\mathrm{4}}{\mathrm{4}+\mathrm{1}}=\mathrm{0}.\mathrm{8} \\ $$$${probability}\:{fail}\:{q}=\mathrm{1}−\mathrm{0}.\mathrm{8}=\mathrm{0}.\mathrm{2} \\ $$$$ \\ $$$${C}_{\mathrm{7}} ^{\mathrm{9}} ×\mathrm{0}.\mathrm{8}^{\mathrm{7}} ×\mathrm{0}.\mathrm{2}^{\mathrm{2}} =\mathrm{36}×\mathrm{0}.\mathrm{8}^{\mathrm{7}} ×\mathrm{0}.\mathrm{2}^{\mathrm{2}} \\ $$$$=\mathrm{0}.\mathrm{302}=\mathrm{30}.\mathrm{2\%} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *