Menu Close

If-the-sides-of-a-triangle-are-consecutive-integers-and-the-maximum-angle-is-twice-the-minimum-determine-the-sides-of-the-triangle-




Question Number 76112 by Maclaurin Stickker last updated on 23/Dec/19
If the sides of a triangle are consecutive  integers and the maximum angle  is twice the minimum, determine  the sides of the triangle.
$${If}\:{the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{consecutive} \\ $$$${integers}\:{and}\:{the}\:{maximum}\:{angle} \\ $$$${is}\:{twice}\:{the}\:{minimum},\:{determine} \\ $$$${the}\:{sides}\:{of}\:{the}\:{triangle}. \\ $$
Answered by mr W last updated on 24/Dec/19
say the sides are n−1,n,n+1  cos θ_(max) =(((n−1)^2 +n^2 −(n+1)^2 )/(2(n−1)n))=((n−4)/(2(n−1)))  cos θ_(min) =(((n+1)^2 +n^2 −(n−1)^2 )/(2(n+1)n))=((n+4)/(2(n+1)))  θ_(max) =2θ_(min)   cos θ_(max) =2 cos^2  θ_(min) −1  ((n−4)/(2(n−1)))=2×(((n+4)^2 )/(4(n+1)^2 ))−1  ((n−4)/(n−1))=((4n+14−n^2 )/(n^2 +2n+1))  2n^3 −7n^2 −17n+10=0  (n+2)(n−5)(2n−1)=0  ⇒n=5  ⇒sides are 4, 5 and 6.
$${say}\:{the}\:{sides}\:{are}\:{n}−\mathrm{1},{n},{n}+\mathrm{1} \\ $$$$\mathrm{cos}\:\theta_{{max}} =\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}\left({n}−\mathrm{1}\right){n}}=\frac{{n}−\mathrm{4}}{\mathrm{2}\left({n}−\mathrm{1}\right)} \\ $$$$\mathrm{cos}\:\theta_{{min}} =\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} −\left({n}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}\left({n}+\mathrm{1}\right){n}}=\frac{{n}+\mathrm{4}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\theta_{{max}} =\mathrm{2}\theta_{{min}} \\ $$$$\mathrm{cos}\:\theta_{{max}} =\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta_{{min}} −\mathrm{1} \\ $$$$\frac{{n}−\mathrm{4}}{\mathrm{2}\left({n}−\mathrm{1}\right)}=\mathrm{2}×\frac{\left({n}+\mathrm{4}\right)^{\mathrm{2}} }{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }−\mathrm{1} \\ $$$$\frac{{n}−\mathrm{4}}{{n}−\mathrm{1}}=\frac{\mathrm{4}{n}+\mathrm{14}−{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}} \\ $$$$\mathrm{2}{n}^{\mathrm{3}} −\mathrm{7}{n}^{\mathrm{2}} −\mathrm{17}{n}+\mathrm{10}=\mathrm{0} \\ $$$$\left({n}+\mathrm{2}\right)\left({n}−\mathrm{5}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{n}=\mathrm{5} \\ $$$$\Rightarrow{sides}\:{are}\:\mathrm{4},\:\mathrm{5}\:{and}\:\mathrm{6}. \\ $$
Commented by Maclaurin Stickker last updated on 24/Dec/19
I did by the same way, but I wasn′t  sure. Thank you for the great  answer.
$${I}\:{did}\:{by}\:{the}\:{same}\:{way},\:{but}\:{I}\:{wasn}'{t} \\ $$$${sure}.\:{Thank}\:{you}\:{for}\:{the}\:{great} \\ $$$${answer}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *