Question Number 76112 by Maclaurin Stickker last updated on 23/Dec/19
$${If}\:{the}\:{sides}\:{of}\:{a}\:{triangle}\:{are}\:{consecutive} \\ $$$${integers}\:{and}\:{the}\:{maximum}\:{angle} \\ $$$${is}\:{twice}\:{the}\:{minimum},\:{determine} \\ $$$${the}\:{sides}\:{of}\:{the}\:{triangle}. \\ $$
Answered by mr W last updated on 24/Dec/19
$${say}\:{the}\:{sides}\:{are}\:{n}−\mathrm{1},{n},{n}+\mathrm{1} \\ $$$$\mathrm{cos}\:\theta_{{max}} =\frac{\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} −\left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}\left({n}−\mathrm{1}\right){n}}=\frac{{n}−\mathrm{4}}{\mathrm{2}\left({n}−\mathrm{1}\right)} \\ $$$$\mathrm{cos}\:\theta_{{min}} =\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} −\left({n}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}\left({n}+\mathrm{1}\right){n}}=\frac{{n}+\mathrm{4}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\theta_{{max}} =\mathrm{2}\theta_{{min}} \\ $$$$\mathrm{cos}\:\theta_{{max}} =\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta_{{min}} −\mathrm{1} \\ $$$$\frac{{n}−\mathrm{4}}{\mathrm{2}\left({n}−\mathrm{1}\right)}=\mathrm{2}×\frac{\left({n}+\mathrm{4}\right)^{\mathrm{2}} }{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }−\mathrm{1} \\ $$$$\frac{{n}−\mathrm{4}}{{n}−\mathrm{1}}=\frac{\mathrm{4}{n}+\mathrm{14}−{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}} \\ $$$$\mathrm{2}{n}^{\mathrm{3}} −\mathrm{7}{n}^{\mathrm{2}} −\mathrm{17}{n}+\mathrm{10}=\mathrm{0} \\ $$$$\left({n}+\mathrm{2}\right)\left({n}−\mathrm{5}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{n}=\mathrm{5} \\ $$$$\Rightarrow{sides}\:{are}\:\mathrm{4},\:\mathrm{5}\:{and}\:\mathrm{6}. \\ $$
Commented by Maclaurin Stickker last updated on 24/Dec/19
$${I}\:{did}\:{by}\:{the}\:{same}\:{way},\:{but}\:{I}\:{wasn}'{t} \\ $$$${sure}.\:{Thank}\:{you}\:{for}\:{the}\:{great} \\ $$$${answer}. \\ $$