Menu Close

If-the-straight-lines-a-i-z-a-i-z-b-i-0-i-1-2-3-where-b-i-are-real-are-concurrent-then-b-i-a-2-a-3-a-2-a-3-is-equal-to-




Question Number 140445 by EnterUsername last updated on 07/May/21
If the straight lines a_i ^� z+a_i z^� +b_i =0(i=1, 2, 3), where  b_i  are real, are concurrent, then Σb_i (a_2 a_3 ^� −a_2 ^� a_3 ) is  equal to _____.
$$\mathrm{If}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{lines}\:\bar {{a}}_{{i}} {z}+{a}_{{i}} \bar {{z}}+{b}_{{i}} =\mathrm{0}\left({i}=\mathrm{1},\:\mathrm{2},\:\mathrm{3}\right),\:\mathrm{where} \\ $$$${b}_{{i}} \:\mathrm{are}\:\mathrm{real},\:\mathrm{are}\:\mathrm{concurrent},\:\mathrm{then}\:\Sigma{b}_{{i}} \left({a}_{\mathrm{2}} \bar {{a}}_{\mathrm{3}} −\bar {{a}}_{\mathrm{2}} {a}_{\mathrm{3}} \right)\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to}\:\_\_\_\_\_. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *