Menu Close

If-the-sum-of-the-first-nth-terms-of-a-sequence-is-given-by-S-n-9-1-1-3-n-a-find-the-first-and-the-second-term-of-the-sequence-b-find-the-nth-term-of-the-sequence-c-show-that-th




Question Number 6166 by sanusihammed last updated on 16/Jun/16
If the sum of the first nth terms of a sequence is given by   S_(n )  =  9(1 − (1/(3^n  )))  (a) find the first and the second term of the sequence  (b) find the nth term of the sequence  (c) show that the sequence is a GP and find it common ratio    please help.
$${If}\:{the}\:{sum}\:{of}\:{the}\:{first}\:{nth}\:{terms}\:{of}\:{a}\:{sequence}\:{is}\:{given}\:{by}\: \\ $$$${S}_{{n}\:} \:=\:\:\mathrm{9}\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{3}^{{n}} \:}\right) \\ $$$$\left({a}\right)\:{find}\:{the}\:{first}\:{and}\:{the}\:{second}\:{term}\:{of}\:{the}\:{sequence} \\ $$$$\left({b}\right)\:{find}\:{the}\:{nth}\:{term}\:{of}\:{the}\:{sequence} \\ $$$$\left({c}\right)\:{show}\:{that}\:{the}\:{sequence}\:{is}\:{a}\:{GP}\:{and}\:{find}\:{it}\:{common}\:{ratio} \\ $$$$ \\ $$$${please}\:{help}. \\ $$
Commented by prakash jain last updated on 17/Jun/16
First Term=S_1 =9(1−(1/3))=6  n^(th)  term=S_n −S_(n−1) =9(1−(1/3^n ))−9(1−(1/3^(n−1) ))  =9((1/3^(n−1) )−(1/3^n ))=((9∙2)/3^n )=((18)/3^n )  ratio=(a_n /a_(n−1) )=(1/3)  Since ratio is constant sequence is aGP
$$\mathrm{First}\:\mathrm{Term}={S}_{\mathrm{1}} =\mathrm{9}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{6} \\ $$$${n}^{{th}} \:\mathrm{term}={S}_{{n}} −{S}_{{n}−\mathrm{1}} =\mathrm{9}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{{n}} }\right)−\mathrm{9}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{{n}−\mathrm{1}} }\right) \\ $$$$=\mathrm{9}\left(\frac{\mathrm{1}}{\mathrm{3}^{{n}−\mathrm{1}} }−\frac{\mathrm{1}}{\mathrm{3}^{{n}} }\right)=\frac{\mathrm{9}\centerdot\mathrm{2}}{\mathrm{3}^{{n}} }=\frac{\mathrm{18}}{\mathrm{3}^{{n}} } \\ $$$$\mathrm{ratio}=\frac{{a}_{{n}} }{{a}_{{n}−\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{Since}\:\mathrm{ratio}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{aGP} \\ $$
Commented by sanusihammed last updated on 17/Jun/16
Thanks so much
$${Thanks}\:{so}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *