Menu Close

If-u-arcsin-x-y-arctan-y-x-show-that-x-u-dx-y-u-dy-0-




Question Number 76715 by peter frank last updated on 29/Dec/19
If u=arcsin (x/y)+arctan (y/x)  show that   x(∂u/dx)+y(∂u/dy)=0
$${If}\:{u}={arc}\mathrm{sin}\:\frac{{x}}{{y}}+{arc}\mathrm{tan}\:\frac{{y}}{{x}} \\ $$$${show}\:{that}\: \\ $$$${x}\frac{\partial{u}}{{dx}}+{y}\frac{\partial{u}}{{dy}}=\mathrm{0} \\ $$
Commented by abdomathmax last updated on 30/Dec/19
(∂u/∂x) =(1/(y(√(1−(x^2 /y^2 )))))−(y/(x^2 (1+(y^2 /x^2 )))) =(1/( (√(y^2 −x^2 ))))−(y/(x^2  +y^2 ))   and   (∂u/∂y) =−(x/(y^2 (√(1−(x^2 /y^2 ))))) +(1/(x(1+(y^2 /x^2 )))) =−(x/(y(√(y^2 −x^2 )))) +(x/(x^2  +y^2 ))  x(∂u/∂x) +y(∂u/∂y) =(x/( (√(y^2 −x^2 ))))−((xy)/(x^2  +y^2 )) −(x/( (√(y^2 −x^2 )))) +((xy)/(x^2  +y^2 ))  =0
$$\frac{\partial{u}}{\partial{x}}\:=\frac{\mathrm{1}}{{y}\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }}}−\frac{{y}}{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}\:=\frac{\mathrm{1}}{\:\sqrt{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }}−\frac{{y}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\:\:{and}\: \\ $$$$\frac{\partial{u}}{\partial{y}}\:=−\frac{{x}}{{y}^{\mathrm{2}} \sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }}}\:+\frac{\mathrm{1}}{{x}\left(\mathrm{1}+\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)}\:=−\frac{{x}}{{y}\sqrt{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:+\frac{{x}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$$${x}\frac{\partial{u}}{\partial{x}}\:+{y}\frac{\partial{u}}{\partial{y}}\:=\frac{{x}}{\:\sqrt{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }}−\frac{{xy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:−\frac{{x}}{\:\sqrt{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\:+\frac{{xy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$$$=\mathrm{0} \\ $$
Commented by peter frank last updated on 30/Dec/19
help 76713
$${help}\:\mathrm{76713} \\ $$
Commented by peter frank last updated on 01/Jan/20
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *