Menu Close

If-ur-log-r-show-that-r-1-10-ur-log3628800-please-help-




Question Number 5988 by sanusihammed last updated on 08/Jun/16
If    ur = log r  show that   Σ_(r = 1) ^(10)  ur = log3628800    please help.
Ifur=logrshowthatr=110ur=log3628800pleasehelp.
Answered by Yozzii last updated on 08/Jun/16
ur=logr  ∴Σ_(r=1) ^(10) ur=Σ_(r=1) ^(10) logr=S  For x,y>0 we have that logx+logy=logxy.    PROOF:   Let u=a^(log_a m)  where m>0 & a>0.⇒u>0  Also let n=log_a r^k   (a>0,r>0,k≠0)⇒r^k =a^n ⇒r=a^(n/k) ⇒log_a r=n/k⇒n=klog_a r  (Power rule)  ⇒log_a u=log_a (a^(log_a m) )=(log_a m)(log_a a)  Since a=a^1 ⇒log_a a=1.  log_a u=log_a m⇒u=m ∴ m=a^(log_a m) .  So, if x,y>0⇒ a^(log_a x) ×a^(log_a y) =xy or a^(log_a x+log_a y) =xy  ⇒log_a xy=log_a a^(log_a x+log_a y) =(log_a x+log_a y)(log_a a)       ⇒log_a xy=log_a x+log_a y                               □    Thus, S=logΠ_(r=1) ^(10) r=log(10!)=log3628800
ur=logr10r=1ur=10r=1logr=SForx,y>0wehavethatlogx+logy=logxy.PROOF:Letu=alogamwherem>0&a>0.u>0Alsoletn=logark(a>0,r>0,k0)rk=anr=an/klogar=n/kn=klogar(Powerrule)logau=loga(alogam)=(logam)(logaa)Sincea=a1logaa=1.logau=logamu=mm=alogam.So,ifx,y>0alogax×alogay=xyoralogax+logay=xylogaxy=logaalogax+logay=(logax+logay)(logaa)logaxy=logax+logay◻Thus,S=log10r=1r=log(10!)=log3628800
Commented by sanusihammed last updated on 08/Jun/16
Wow thanks. i really appreiate=
Wowthanks.ireallyappreiate=

Leave a Reply

Your email address will not be published. Required fields are marked *