Menu Close

If-v-p-1-n-x-where-p-pressure-find-the-dimension-of-n-and-x-




Question Number 132173 by I want to learn more last updated on 11/Feb/21
If    v   =   ((√(p   +   (1/n)))/x),         where    p  =   pressure.  find the dimension of     n   and   x
$$\mathrm{If}\:\:\:\:\mathrm{v}\:\:\:=\:\:\:\frac{\sqrt{\mathrm{p}\:\:\:+\:\:\:\frac{\mathrm{1}}{\mathrm{n}}}}{\mathrm{x}},\:\:\:\:\:\:\:\:\:\mathrm{where}\:\:\:\:\mathrm{p}\:\:=\:\:\:\mathrm{pressure}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{dimension}\:\mathrm{of}\:\:\:\:\:\mathrm{n}\:\:\:\mathrm{and}\:\:\:\mathrm{x} \\ $$
Commented by mr W last updated on 12/Feb/21
question is incomplete!  if dimension of v is not given, you  can′t determine dimension of x.    assume v is velocity  [v]=(m/s)  [p]=(N/m^2 )  [n]=(1/([p]))=(m^2 /N)  [x]=((√([p]))/([v]))=((√(N/m^2 ))/(m/s))=((s(√N))/m^2 )
$${question}\:{is}\:{incomplete}! \\ $$$${if}\:{dimension}\:{of}\:{v}\:{is}\:{not}\:{given},\:{you} \\ $$$${can}'{t}\:{determine}\:{dimension}\:{of}\:{x}. \\ $$$$ \\ $$$${assume}\:{v}\:{is}\:{velocity} \\ $$$$\left[{v}\right]=\frac{{m}}{{s}} \\ $$$$\left[{p}\right]=\frac{{N}}{{m}^{\mathrm{2}} } \\ $$$$\left[{n}\right]=\frac{\mathrm{1}}{\left[{p}\right]}=\frac{{m}^{\mathrm{2}} }{{N}} \\ $$$$\left[{x}\right]=\frac{\sqrt{\left[{p}\right]}}{\left[{v}\right]}=\frac{\sqrt{\frac{{N}}{{m}^{\mathrm{2}} }}}{\frac{{m}}{{s}}}=\frac{{s}\sqrt{{N}}}{{m}^{\mathrm{2}} } \\ $$
Commented by I want to learn more last updated on 12/Feb/21
Thanks sir. I now understand. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{now}\:\mathrm{understand}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *