Menu Close

If-v-r-m-where-r-x-2-y-2-z-2-show-that-2-v-x-2-2-v-y-2-2-v-z-2-m-m-1-r-m-2-




Question Number 135935 by Engr_Jidda last updated on 17/Mar/21
If  v=r^m  where r=(√(x^2 +y^2 +z^2  )) , show that  (∂^2 v/∂x^2 )+(∂^2 v/∂y^2 )+(∂^2 v/∂z^2 )=m(m−1)r^(m−2)
Ifv=rmwherer=x2+y2+z2,showthat2vx2+2vy2+2vz2=m(m1)rm2
Answered by Olaf last updated on 17/Mar/21
v = r^m (x_i ^2 ) in Einstein notation  (∂v/∂x_j ) = mr^(m−1) ((2x_j )/(2r)) = mx_j r^(m−2)   (∂^2 v/∂x_j ^2 ) = m(r^(m−2) +x_j (m−2)r^(m−3) ((2x_j )/(2r)))  (∂^2 v/∂x_j ^2 ) = mr^(m−4) (r^2 +(m−2)x_j ^2 )  In Einstein notation :  (∂^2 v/∂x_j ^2 ) = mr^(m−4) (3r^2 +(m−2)r^2 )  (∂^2 v/∂x_j ^2 ) = m(m+1)r^(m−2)
v=rm(xi2)inEinsteinnotationvxj=mrm12xj2r=mxjrm22vxj2=m(rm2+xj(m2)rm32xj2r)2vxj2=mrm4(r2+(m2)xj2)InEinsteinnotation:2vxj2=mrm4(3r2+(m2)r2)2vxj2=m(m+1)rm2

Leave a Reply

Your email address will not be published. Required fields are marked *