Menu Close

If-w-1-is-a-cube-root-of-unity-x-a-b-y-aw-bw-2-and-z-aw-2-bw-then-x-3-y-3-z-3-




Question Number 139490 by EnterUsername last updated on 27/Apr/21
If w≠1 is a cube root of unity, x=a+b, y=aw+bw^2   and z=aw^2 +bw, then x^3 +y^3 +z^3 =?
Ifw1isacuberootofunity,x=a+b,y=aw+bw2andz=aw2+bw,thenx3+y3+z3=?
Answered by Rasheed.Sindhi last updated on 27/Apr/21
x^3 +y^3 +z^3 =(a+b)^3 +(aw+bw^2 )^3 +(aw^2 +bw)^3   =a^3 +b^3 +3ab(a+b)           +a^3 w^3 +b^3 (w^3 )^2 +3abw^3 (aw+bw^2 )    +a^3 (w^3 )^2 +b^3 w^3 +3abw^3 (aw^2 +bw)  =a^3 +b^3 +3ab(a+b)        +a^3 (1)+b^3 (1)^2 +3ab(1)(aw+bw^2 )       +a^3 (1)^2 +b^3 (1)+3ab(1)(aw^2 +bw)  =3a^3 +3b^3 +3ab(a+aw+aw^2 +b+bw+bw^2 )  =3a^3 +3b^3 +3ab{a(1+w+w^2 )+b(1+w+w^2 )}  =3a^3 +3b^3 +3ab{a(0)+b(0)}  =3(a^3 +b^3 )
x3+y3+z3=(a+b)3+(aw+bw2)3+(aw2+bw)3=a3+b3+3ab(a+b)+a3w3+b3(w3)2+3abw3(aw+bw2)+a3(w3)2+b3w3+3abw3(aw2+bw)=a3+b3+3ab(a+b)+a3(1)+b3(1)2+3ab(1)(aw+bw2)+a3(1)2+b3(1)+3ab(1)(aw2+bw)=3a3+3b3+3ab(a+aw+aw2+b+bw+bw2)=3a3+3b3+3ab{a(1+w+w2)+b(1+w+w2)}=3a3+3b3+3ab{a(0)+b(0)}=3(a3+b3)
Commented by EnterUsername last updated on 27/Apr/21
Thanks Sir
ThanksSir
Answered by Ar Brandon last updated on 27/Apr/21
x^3 +y^3 +z^3 −3xyz=(x+y+z)(x+yw+zw^2 )(x+yw^2 +zw)  x^3 +y^3 +z^3 −3(a+b)(aw+bw^2 )(aw^2 +bw)=0  x^3 +y^3 +z^3 =3(a+b)(a^2 w^3 +b^2 w^3 +ab(w^2 +w^4 )  x^3 +y^3 +z^3 =3(a+b)(a^2 −ab+b^2 )=3(a^3 +b^3 )
x3+y3+z33xyz=(x+y+z)(x+yw+zw2)(x+yw2+zw)x3+y3+z33(a+b)(aw+bw2)(aw2+bw)=0x3+y3+z3=3(a+b)(a2w3+b2w3+ab(w2+w4)x3+y3+z3=3(a+b)(a2ab+b2)=3(a3+b3)
Commented by Ar Brandon last updated on 27/Apr/21
x+y+z=a+b+(w+w^2 )a+(w+w^2 )b                 =a+b−a−b=0  (w^2 +w=−1), w^4 =w
x+y+z=a+b+(w+w2)a+(w+w2)b=a+bab=0(w2+w=1),w4=w

Leave a Reply

Your email address will not be published. Required fields are marked *