Menu Close

if-w-f-u-and-v-where-f-uu-f-vv-0-and-u-x-2-y-2-2-and-v-xy-show-that-w-xx-w-yy-0-pleas-sir-help-me-




Question Number 72883 by mhmd last updated on 04/Nov/19
if w=f(u and v) where f_(uu) +f_(vv) =0 and u=(x^2 −y^2 )/2 and v=xy show that w_(xx) +w_(yy) =0 ?  pleas sir help me
ifw=f(uandv)wherefuu+fvv=0andu=(x2y2)/2andv=xyshowthatwxx+wyy=0?pleassirhelpme
Answered by mind is power last updated on 04/Nov/19
w(x,y)=f(u,v)  w(x,y)=f(β(x,y))  ⇒jac W=jac(f).jacβ(x,y)   ⇒((∂w/∂x),(∂w/∂y))=((∂f/∂u),(∂f/∂v)). [((x        −y)),((y     x)) ]   ⇒(∂w/∂x)=((x∂f)/∂u)+((y∂f)/∂v)  ⇒(∂w/∂y)=−y(∂f/∂u)+x(∂f/∂v)  (∂^2 W/∂x^2 )=(∂f/∂u)+x((∂^2 f/∂u^2 ).x+(∂^2 f/(∂u∂v))y)+y((∂^2 f/(∂v∂u))x+(∂^2 f/∂v^2 )y)  (∂^2 w/∂y^2 )=−(∂f/∂u)−y((∂^2 f/∂u^2 ).−y+(∂^2 f/(∂u∂v))x)+x((∂^2 f/(∂u∂v)).−y+(∂^2 f/∂v^2 ).x)  ⇒(∂^2 w/∂x^2 )=(∂f/∂u)+2xy(∂^2 f/(∂u∂v))+x^2 (∂^2 f/∂u^2 )+y^2 (∂^2 f/∂v^2 )  (∂^2 w/∂y^2 )=−(∂f/∂u)−2xy(∂^2 f/(∂u∂v))+x^2 (∂^2 f/∂v^2 )+y^2 (∂^2 f/∂u^2 )  ⇒(∂^2 w/∂x^2 )+(∂^2 w/∂y^2 )=(x^2 +y^2 )[(∂^2 f/∂u^2 )+(∂^2 f/∂v^2 )]=(x^2 +y^2 ).0=0
w(x,y)=f(u,v)w(x,y)=f(β(x,y))jacW=jac(f).jacβ(x,y)(wx,wy)=(fu,fv).[xyyx]wx=xfu+yfvwy=yfu+xfv2Wx2=fu+x(2fu2.x+2fuvy)+y(2fvux+2fv2y)2wy2=fuy(2fu2.y+2fuvx)+x(2fuv.y+2fv2.x)2wx2=fu+2xy2fuv+x22fu2+y22fv22wy2=fu2xy2fuv+x22fv2+y22fu22wx2+2wy2=(x2+y2)[2fu2+2fv2]=(x2+y2).0=0

Leave a Reply

Your email address will not be published. Required fields are marked *