Menu Close

If-we-have-a-vector-v-x-y-and-apply-a-linear-tranformation-such-that-a-new-vector-v-x-y-is-made-can-we-calculate-the-change-of-area-with-respect-to-the-unit-vector-




Question Number 7093 by FilupSmith last updated on 10/Aug/16
If we have a vector v= [(x),(y) ]  and apply a linear tranformation such that  a new vector v^′ = [((x′)),((y′)) ] is made,  can we calculate the change of area with  respect to the ı^�  unit vector?
Ifwehaveavectorv=[xy]andapplyalineartranformationsuchthatanewvectorv=[xy]ismade,canwecalculatethechangeofareawithrespecttotheı^unitvector?
Commented by FilupSmith last updated on 10/Aug/16
ı^� =i=unit vector of x axis  ȷ^� =j=unit vector of y axis    v= [(x),(y) ]  v′=kv,   k= [(i_x ,j_x ),(i_y ,j_y ) ] (k = transformation matrix)  i_x , i_y   are new coordinates for i  j_x , j_y   are new coordinates for j    ∴v′= [(i_x ,j_x ),(i_y ,j_y ) ] [(x),(y) ]= [((xi_x +yj_x )),((xi_y +yj_y )) ]  therefore:  x′=xi_x +yj_x   y′=xi_y +yj_y   let area be A=(1/2)height×base = (1/2)x′y′  How can we integrate with respect to  both i_x  and i_y ???  ∣i∣=(√(i_x ^2 +i_y ^2 ))     (=1 for original i ∵ i_x =1∧i_y =0)
ı^=i=unitvectorofxaxisȷ^=j=unitvectorofyaxisv=[xy]v=kv,k=[ixjxiyjy](k=transformationmatrix)ix,iyarenewcoordinatesforijx,jyarenewcoordinatesforjv=[ixjxiyjy][xy]=[xix+yjxxiy+yjy]therefore:x=xix+yjxy=xiy+yjyletareabeA=12height×base=12xyHowcanweintegratewithrespecttobothixandiy???i∣=ix2+iy2(=1fororiginaliix=1iy=0)

Leave a Reply

Your email address will not be published. Required fields are marked *