Menu Close

If-x-0-0-5pi-show-that-sinx-x-1-6-x-3-Hence-prove-that-1-3000-0-1-10-x-2-1-x-sinx-2-dx-2-5999-




Question Number 2089 by Yozzi last updated on 01/Nov/15
If x∈[0,0.5π], show that sinx≥x−(1/6)x^3 .  Hence prove that  (1/(3000))≤∫_0 ^(1/10) (x^2 /((1−x+sinx)^2 ))dx≤(2/(5999)).
Ifx[0,0.5π],showthatsinxx16x3.Henceprovethat1300001/10x2(1x+sinx)2dx25999.
Commented by prakash jain last updated on 02/Nov/15
sin x≥x−(x^3 /6)  0≤((x/(1−x+sin x)))^2 ≤((x/(1−x+x−(x^3 /6))))^2   ∫((36x^2 )/((6−x^3 )^2 ))dx  6−x^3 =u⇒−3x^2 dx=du  ∫ ((−12du)/u^2 )=((12)/u)=((12)/(6−x^3 ))=((12000)/(5999))−2=(2/(5999))  sin x≤x  x^2 ≤((x/(1−x+sin x)))^2   ∫x^2 dx=[(x^3 /3)]_0 ^(1/10) =(1/(3000))  Not a complete proof but an outline of approach.
sinxxx360(x1x+sinx)2(x1x+xx36)236x2(6x3)2dx6x3=u3x2dx=du12duu2=12u=126x3=1200059992=25999sinxxx2(x1x+sinx)2x2dx=[x33]01/10=13000Notacompleteproofbutanoutlineofapproach.
Commented by 123456 last updated on 01/Nov/15
x−(x^3 /6)=T_3 (x)  T_n (x)=Σ_(i=0) ^n (d^i f/dx^i )(a)(((x−a)^i )/(i!)),f(x)=sin x
xx36=T3(x)Tn(x)=ni=0difdxi(a)(xa)ii!,f(x)=sinx
Commented by prakash jain last updated on 02/Nov/15
sin x≥x−(x^3 /(3!)), can be seen from sin x series  expansion.
sinxxx33!,canbeseenfromsinxseriesexpansion.
Commented by Yozzi last updated on 02/Nov/15
Thanks!
Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *