Menu Close

if-x-0-then-prove-x-4-x-4-1-x-3-x-3-x-2-1-x-x-x-2-1-




Question Number 8016 by Nayon last updated on 28/Sep/16
     if x≠0 then  prove→      ((x^4 +x^(−4) +1)/(x^3 +x^(−3) ))=((x^2 +1)/x)−(x/(x^2 +1))
ifx0thenprovex4+x4+1x3+x3=x2+1xxx2+1
Commented by FilupSmith last updated on 28/Sep/16
((x^4 +(1/x^4 )+1)/(x^3 +(1/x^3 )))=(((x^8 +1+x^4 )/x^4 )/((x^6 +1)/x^3 ))  =((x^8 +x^4 +1)/x^4 )+(x^3 /(x^6 +1))  =x^4 +1+(1/x^4 )+(x^3 /(x^6 +1))  continue
x4+1x4+1x3+1x3=x8+1+x4x4x6+1x3=x8+x4+1x4+x3x6+1=x4+1+1x4+x3x6+1continue
Commented by Nayon last updated on 28/Sep/16
wrong way filup
wrongwayfilup
Answered by Rasheed Soomro last updated on 28/Sep/16
See answer in the following comment by nume1114.
Seeanswerinthefollowingcommentbynume1114.
Commented by Nayon last updated on 28/Sep/16
the question is that to prove it. it′s a identity,  not only a equetion.
thequestionisthattoproveit.itsaidentity,notonlyaequetion.
Commented by Rasheed Soomro last updated on 28/Sep/16
Sorry I misread.
SorryImisread.
Commented by nume1114 last updated on 28/Sep/16
Let x+x^(−1) =y  x^2 +x^(−2) =y^2 −2  x^3 +x^(−3) =y^3 −3y  x^4 +x^(−4) =y^4 −4y^2 +2  LHS=((y^4 −4y^2 +3)/(y^3 −3y))=(((y^2 −3)(y^2 −1))/(y(y^2 −3)))      [((if x>0)),((y=x+x^(−1) ≥2(√(xx^(−1) ))=2)),((if x<0)),((−y=−x+(−x)^(−1) ≥2(√((−x)∙(−x^(−1) )))=2)),((y≤−2)),((so,y^2 −3≠0)) ]      (((y^2 −3)(y^2 −1))/(y(y^2 −3)))=((y^2 −1)/y)=y−(1/y)  =x+(1/x)−(1/(x+(1/x)))=RHS  Proved
Letx+x1=yx2+x2=y22x3+x3=y33yx4+x4=y44y2+2LHS=y44y2+3y33y=(y23)(y21)y(y23)[ifx>0y=x+x12xx1=2ifx<0y=x+(x)12(x)(x1)=2y2so,y230](y23)(y21)y(y23)=y21y=y1y=x+1x1x+1x=RHSProved
Answered by sandy_suhendra last updated on 28/Sep/16
LHS = ((x^4 +x^(−4) +1)/(x^3 +x^(−3) ))×(x^4 /x^4 )  =((x^8 +x^4 +1)/(x^7 +x))  =(((x^4 +1)^2 −x^4 )/(x(x^6 +1)))  =(((x^4 +1−x^2 )(x^4 +1+x^2 ))/(x(x^2 +1)(x^4 −x^2 +1)))  =((x^4 +x^2 +1)/(x(x^2 +1)))  =(((x^2 +1)^2 −x^2 )/(x(x^2 +1)))  =(((x^2 +1)^2 )/(x(x^2 +1))) − (x^2 /(x(x^2 +1)))  =((x^2 +1)/x) − (x/(x^2 +1))     (proved)
LHS=x4+x4+1x3+x3×x4x4=x8+x4+1x7+x=(x4+1)2x4x(x6+1)=(x4+1x2)(x4+1+x2)x(x2+1)(x4x2+1)=x4+x2+1x(x2+1)=(x2+1)2x2x(x2+1)=(x2+1)2x(x2+1)x2x(x2+1)=x2+1xxx2+1(proved)

Leave a Reply

Your email address will not be published. Required fields are marked *