Menu Close

If-x-1-3-y-1-3-z-1-3-0-Then-pove-that-x-y-z-3-3xyz-




Question Number 6809 by Tawakalitu. last updated on 28/Jul/16
If  x^(1/3)  +  y^(1/3)  +  z^(1/3)   =  0,  Then  pove that   (x + y + z)^3   = 3xyz
$${If}\:\:{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:\:{y}^{\frac{\mathrm{1}}{\mathrm{3}}} \:+\:\:{z}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:=\:\:\mathrm{0},\:\:{Then}\:\:{pove}\:{that}\: \\ $$$$\left({x}\:+\:{y}\:+\:{z}\right)^{\mathrm{3}} \:\:=\:\mathrm{3}{xyz} \\ $$
Commented by Yozzii last updated on 29/Jul/16
x^(1/3) +y^(1/3) +z^(1/3) =0  Let x=u^3 ,y=w^3 ,z=v^3 .  ∴u+w+v=0  Using the identity u^3 +w^3 +v^3 =(u+w+v)(u^2 +w^2 +v^2 −uv−vw−wu)+3uwv  and u+w+v=0,  3uvw=u^3 +w^3 +v^3   or 3(xyz)^(1/3) =x+y+z  ⇒(x+y+z)^3 =27xyz  −−−−−−−−−−−−−−−−−−−−−−−  Let x=8,y=27, z=−125 as an example.  ⇒x^(1/3) +y^(1/3) +z^(1/3) =2+3−5=0.  ∴(x+y+z)^3 =−729000  And 3xyz=3×8×27×(−125)=−81000≠−729000  ⇒(x+y+z)^3 ≠3xyz generally if x^(1/3) +y^(1/3) +z^(1/3) =0.  But, 27xyz=27×8×27×(−125)=−729000  ⇒(x+y+z)^3 =27xyz.
$${x}^{\mathrm{1}/\mathrm{3}} +{y}^{\mathrm{1}/\mathrm{3}} +{z}^{\mathrm{1}/\mathrm{3}} =\mathrm{0} \\ $$$${Let}\:{x}={u}^{\mathrm{3}} ,{y}={w}^{\mathrm{3}} ,{z}={v}^{\mathrm{3}} . \\ $$$$\therefore{u}+{w}+{v}=\mathrm{0} \\ $$$${Using}\:{the}\:{identity}\:{u}^{\mathrm{3}} +{w}^{\mathrm{3}} +{v}^{\mathrm{3}} =\left({u}+{w}+{v}\right)\left({u}^{\mathrm{2}} +{w}^{\mathrm{2}} +{v}^{\mathrm{2}} −{uv}−{vw}−{wu}\right)+\mathrm{3}{uwv} \\ $$$${and}\:{u}+{w}+{v}=\mathrm{0}, \\ $$$$\mathrm{3}{uvw}={u}^{\mathrm{3}} +{w}^{\mathrm{3}} +{v}^{\mathrm{3}} \\ $$$${or}\:\mathrm{3}\left({xyz}\right)^{\mathrm{1}/\mathrm{3}} ={x}+{y}+{z} \\ $$$$\Rightarrow\left({x}+{y}+{z}\right)^{\mathrm{3}} =\mathrm{27}{xyz} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Let}\:{x}=\mathrm{8},{y}=\mathrm{27},\:{z}=−\mathrm{125}\:{as}\:{an}\:{example}. \\ $$$$\Rightarrow{x}^{\mathrm{1}/\mathrm{3}} +{y}^{\mathrm{1}/\mathrm{3}} +{z}^{\mathrm{1}/\mathrm{3}} =\mathrm{2}+\mathrm{3}−\mathrm{5}=\mathrm{0}. \\ $$$$\therefore\left({x}+{y}+{z}\right)^{\mathrm{3}} =−\mathrm{729000} \\ $$$${And}\:\mathrm{3}{xyz}=\mathrm{3}×\mathrm{8}×\mathrm{27}×\left(−\mathrm{125}\right)=−\mathrm{81000}\neq−\mathrm{729000} \\ $$$$\Rightarrow\left({x}+{y}+{z}\right)^{\mathrm{3}} \neq\mathrm{3}{xyz}\:{generally}\:{if}\:{x}^{\mathrm{1}/\mathrm{3}} +{y}^{\mathrm{1}/\mathrm{3}} +{z}^{\mathrm{1}/\mathrm{3}} =\mathrm{0}. \\ $$$${But},\:\mathrm{27}{xyz}=\mathrm{27}×\mathrm{8}×\mathrm{27}×\left(−\mathrm{125}\right)=−\mathrm{729000} \\ $$$$\Rightarrow\left({x}+{y}+{z}\right)^{\mathrm{3}} =\mathrm{27}{xyz}. \\ $$
Commented by Tawakalitu. last updated on 29/Jul/16
Thank you very much.
$${Thank}\:{you}\:{very}\:{much}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *