Question Number 9525 by Joel575 last updated on 12/Dec/16
$$\mathrm{If}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} ,\:…,\:{x}_{\mathrm{2009}\:} \in\:\mathbb{R} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{from} \\ $$$$\left(\mathrm{cos}\:{x}_{\mathrm{1}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{2}} \right)\:+\:\left(\mathrm{cos}\:{x}_{\mathrm{2}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{3}} \right)\:+\:…\:+\:\left(\mathrm{cos}\:{x}_{\mathrm{2008}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{2009}} \right)\:+\:\left(\mathrm{cos}\:{x}_{\mathrm{2009}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{1}} \right) \\ $$
Answered by mrW last updated on 15/Dec/16
$$\mathrm{S}=\left(\mathrm{cos}\:{x}_{\mathrm{1}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{2}} \right)\:+\:\left(\mathrm{cos}\:{x}_{\mathrm{2}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{3}} \right)\:+\:…\:+\:\left(\mathrm{cos}\:{x}_{\mathrm{2008}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{2009}} \right)\:+\:\left(\mathrm{cos}\:{x}_{\mathrm{2009}} \right)\left(\mathrm{sin}\:{x}_{\mathrm{1}} \right) \\ $$$$\mathrm{k}=\mathrm{1},\mathrm{2},\mathrm{3},\centerdot\centerdot\centerdot,\mathrm{2009} \\ $$$$\mathrm{following}\:\mathrm{value}\:\mathrm{combinations}\:\mathrm{are}\:\mathrm{possible}\:\mathrm{and}\:\mathrm{result}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{S}: \\ $$$$\left(\mathrm{i}\right):\:\mathrm{cos}\:\mathrm{x}_{\mathrm{k}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{sin}\:\mathrm{x}_{\mathrm{k}} =−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\left(\mathrm{ii}\right):\:\mathrm{cos}\:\mathrm{x}_{\mathrm{k}} =−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}},\:\mathrm{sin}\:\mathrm{x}_{\mathrm{k}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{min}.\:\mathrm{S}=\mathrm{2009}×\left(−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)=−\mathrm{1004}.\mathrm{5} \\ $$