Question Number 6216 by sanusihammed last updated on 18/Jun/16
$${If}\:\:\:\:\:{x}^{\mathrm{2}} \:\:=\:\:\mathrm{2}^{{x}} \:\:\:\:\:\:{find}\:\:{x}\: \\ $$$$ \\ $$$${please}\:{i}\:{need}\:{workings} \\ $$
Answered by prakash jain last updated on 18/Jun/16
$$\mathrm{2ln}\:{x}={x}\mathrm{ln}\:\mathrm{2} \\ $$$$\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}=\frac{\mathrm{ln}\:{x}}{{x}}\:\:\:\:\:\:\:…..\left({A}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}=\frac{\mathrm{ln}\:{x}}{{e}^{\mathrm{ln}\:{x}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}=\left(\mathrm{ln}\:{x}\right){e}^{−\mathrm{ln}\:{x}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}=\left(−\mathrm{ln}\:{x}\right){e}^{−\mathrm{ln}\:{x}} \\ $$$${W}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right)=−\mathrm{ln}\:{x}\:\:\:\:\:…..\left(\mathrm{1}\right) \\ $$$${calculating}\:{W}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right) \\ $$$$\left(\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}\right){e}^{\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{ln}\:\mathrm{2}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$\Rightarrow{W}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right)=\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:….\left(\mathrm{2}\right) \\ $$$$\mathrm{substituting}\:{W}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right)=\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{from}\:\left(\mathrm{2}\right)\:\mathrm{to}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}=−\mathrm{ln}\:{x}\Rightarrow{x}=\mathrm{2} \\ $$
Commented by sanusihammed last updated on 18/Jun/16
$${Thanks}. \\ $$
Commented by FilupSmith last updated on 19/Jun/16
$$\mathrm{Wow}\:\mathrm{I}\:\mathrm{am}\:\mathrm{having}\:\mathrm{trouble}\:\mathrm{understanding} \\ $$$$\mathrm{the}\:\mathrm{last}\:\mathrm{half},\:\mathrm{good}\:\mathrm{work}! \\ $$
Commented by malwaan last updated on 19/Jun/16
$${can}\:{you}\:{prove}\:{the}\:\mathrm{2}{nd}\:{case}\: \\ $$$${x}=\mathrm{4} \\ $$
Commented by prakash jain last updated on 19/Jun/16
$$\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{4}}{e}^{\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{4}}} =\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${W}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right)\:\mathrm{is}\:\mathrm{multivalued} \\ $$$${W}\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mathrm{2}\right)=\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{or}\:\mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${x}=\mathrm{2}\:{or}\:\mathrm{4} \\ $$
Answered by malwaan last updated on 19/Jun/16
$${we}\:{have}\:{two}\:{cases} \\ $$$${case}\:\mathrm{1}:\:\:{x}=\mathrm{2}\:\Rightarrow\mathrm{2}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$${case}\:\mathrm{2}\::\:\:{x}=\mathrm{4}\:\Rightarrow\mathrm{2}^{\mathrm{4}} =\mathrm{4}^{\mathrm{2}} =\mathrm{16} \\ $$