Menu Close

if-x-2-2cx-5d-0-has-root-a-and-b-also-x-2-2ax-5b-0-has-root-c-and-d-then-a-b-c-and-d-are-different-real-number-What-the-value-of-a-b-c-d-




Question Number 2859 by Syaka last updated on 29/Nov/15
if x^2  − 2cx − 5d = 0 has root a and b,  also x^2  − 2ax − 5b = 0 has root c and d  then a, b, c and d are different real number.  What the value of a + b + c + d = ?
ifx22cx5d=0hasrootaandb,alsox22ax5b=0hasrootcanddthena,b,canddaredifferentrealnumber.Whatthevalueofa+b+c+d=?
Commented by Syaka last updated on 29/Nov/15
Nice One Sir.... Thanks to Sir Rasheed and Sir Prakash for Solution
NiceOneSir.ThankstoSirRasheedandSirPrakashforSolution
Answered by Rasheed Soomro last updated on 29/Nov/15
x^2  − 2cx − 5d = 0  a,b are roots   x^2  − 2ax − 5b = 0   c,d are roos  a+b+c+d=?  If   ax^2 +bx+c=0 has  α  and  β   roots  α+β=((−b)/a)  and αβ=(c/a)  Sum  a+b=((−(−2c))/1)=2c..........(i)  c+d=((−(−2a))/1)=2a..........(ii  Adding (i) and (ii)  a+b+c+d=2c+2a =2(a+c).....................(1)  a+c=b+d  Product  ab=−5d and cd=−5b⇒abcd=25bd⇒ac=25⇒c=((25)/a).......(2)  From  (1)  and  ( 2)  a+b+c+d=2(a+((25)/a))  a=((−(−2c)+(√((−2c)^2 −4(1)(−5d))))/(2(1)))=((2c+2(√(c^2 +5d)))/2)      a =c+(√(c^2 +5d))      b =c−(√(c^2 +5d))   ⇒ a−b=2(√(c^2 +5d)) ⇒a^2 +b^2 −2ab=4c^2 +20d            ⇒a^2 +b^2 −4c^2 =2ab+20d..........................(A)  c=((−(−2a)+(√((−2a)^2 −4(1)(−5b))))/(2(1)))=((2a+2(√(a^2 +5b)))/2)  c=a+(√(a^2 +5b))  d=a−(√(a^2 +5b))  ⇒ c−d=2(√(a^2 +5b)) ⇒c^2 +d^2 −2cd=4a^2 +20b             ⇒−4a^2 +c^2 +d^2 =2cd+20b.........................(B)  For complete solution (independant of a,b,c and d  i−e  constant)  see the comment of Sir prakash jain below
x22cx5d=0a,barerootsx22ax5b=0c,dareroosa+b+c+d=?Ifax2+bx+c=0hasαandβrootsα+β=baandαβ=caSuma+b=(2c)1=2c.(i)c+d=(2a)1=2a.(iiAdding(i)and(ii)a+b+c+d=2c+2a=2(a+c)(1)a+c=b+dProductab=5dandcd=5babcd=25bdac=25c=25a.(2)From(1)and(2)a+b+c+d=2(a+25a)a=(2c)+(2c)24(1)(5d)2(1)=2c+2c2+5d2a=c+c2+5db=cc2+5dab=2c2+5da2+b22ab=4c2+20da2+b24c2=2ab+20d..(A)c=(2a)+(2a)24(1)(5b)2(1)=2a+2a2+5b2c=a+a2+5bd=aa2+5bcd=2a2+5bc2+d22cd=4a2+20b4a2+c2+d2=2cd+20b.(B)Forcompletesolution(independantofa,b,canddieconstant)seethecommentofSirprakashjainbelow
Commented by prakash jain last updated on 29/Nov/15
I think a+b+c+d should evaluate to a constant  value since you have 4 variables and 4 equation  that you derived.
Ithinka+b+c+dshouldevaluatetoaconstantvaluesinceyouhave4variablesand4equationthatyouderived.
Commented by Syaka last updated on 29/Nov/15
and a + b + c + d I need exact value, Sir
anda+b+c+dIneedexactvalue,Sir
Commented by RasheedAhmad last updated on 29/Nov/15
Nice Sir!
NiceSir!
Commented by prakash jain last updated on 29/Nov/15
Four equation given by Rasheed  a+b=2c  c+d=2a  ab=−5d  cd=−5b  c=((25)/a)  a+b=2c⇒b=((50−a^2 )/a)  d=((−5b)/c)=((−5(50−a^2 ))/(a((25)/a)))=−((50−a^2 )/5)  c+d=2a  a=b=c=d=0 is trival solution  ...(A)  ((25)/a)−((50−a^2 )/5)=2a  125−50a+a^3 =10a^2   a^3 −10a^2 −50a+125=0  a^3 +5a^2 −15a^2 −75a+25a+125=0  (a+5)(a^2 −15a+25)=0  a=−5 or a=((15±(√(225−100)))/2)=((15±(√5))/2)  a=−5, c=−5, b=−5, c=−5        ....(B)  a=((15−(√5))/2),c=((25)/a)=((50)/(15−(√5)))=((50(15+(√5)))/(100))=((15+(√5))/2)       b=2c−a=((15+15(√5))/2),d=((15−15(√5))/2)     ...(C)  similar you can get the last solution for a=((15+(√5))/2)  a=((15+(√5))/2),c=((15−(√5))/2),b=((15−15(√5))/2), d=((15+15(√5))/2)  ..(D)  C ans D are only valid solutions for  a,b,c,d are different.  in both cases  a+b+c+d=30
FourequationgivenbyRasheeda+b=2cc+d=2aab=5dcd=5bc=25aa+b=2cb=50a2ad=5bc=5(50a2)a25a=50a25c+d=2aa=b=c=d=0istrivalsolution(A)25a50a25=2a12550a+a3=10a2a310a250a+125=0a3+5a215a275a+25a+125=0(a+5)(a215a+25)=0a=5ora=15±2251002=15±52a=5,c=5,b=5,c=5.(B)a=1552,c=25a=50155=50(15+5)100=15+52b=2ca=15+1552,d=151552(C)similaryoucangetthelastsolutionfora=15+52a=15+52,c=1552,b=151552,d=15+1552..(D)CansDareonlyvalidsolutionsfora,b,c,daredifferent.inbothcasesa+b+c+d=30

Leave a Reply

Your email address will not be published. Required fields are marked *