Menu Close

if-x-2-c-c-R-c-0-does-x-c-




Question Number 4728 by 123456 last updated on 01/Mar/16
if ∣x^2 −c∣≤ε, c∈R,c≥0  does?  ∣x−(√c)∣≤ε
ifx2c∣⩽ϵ,cR,c0does?xc∣⩽ϵ
Commented by Yozzii last updated on 01/Mar/16
∣(x−(√c))∣∣x+(√c)∣≤ε  ∣x−(√c)∣≤(ε/(∣x+(√c)∣)) (x≠−(√c))  If ∣x+(√c)∣≥1⇒1≥(1/(∣x+(√c)∣))  ⇒ε≥(ε/(∣x+(√c)∣))⇒∣x−(√c)∣≤ε.  It appears to be necessary that   x≥1−(√c) or x≤−1−(√c) to deduce   ∣x−(√c)∣≤ε    (ε>0).  Suppose x=1−(√(25))−1=−5   for c=25 (so∣x−(√c)∣<1).  ⇒∣25−25∣=0≤1 (so say ε=1).  But∣x−(√c)∣=∣−5−5∣=101=ε.  So, (x,c,ε)=(−5,25,1) shows the  original implication being incorrect.
(xc)∣∣x+c∣⩽ϵxc∣⩽ϵx+c(xc)Ifx+c∣⩾111x+cϵϵx+c⇒∣xc∣⩽ϵ.Itappearstobenecessarythatx1corx1ctodeducexc∣⩽ϵ(ϵ>0).Supposex=1251=5forc=25(soxc∣<1).⇒∣2525∣=01(sosayϵ=1).Butxc∣=∣55∣=101=ϵ.So,(x,c,ϵ)=(5,25,1)showstheoriginalimplicationbeingincorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *