Menu Close

If-x-3-2-y-4-2-25-what-maximum-and-minimum-value-of-7x-8y-




Question Number 140270 by liberty last updated on 06/May/21
If (x−3)^2 +(y−4)^2  = 25 ,  what maximum and minimum  value of 7x+8y ?
If(x3)2+(y4)2=25,whatmaximumandminimumvalueof7x+8y?
Answered by EDWIN88 last updated on 06/May/21
let  { ((x−3=5cos θ→x=3+5cos θ)),((y−4=5sin θ→y=4+5sin θ)) :}  let 7(3+5cos θ)+8(4+5sin θ)=f(θ)  f(θ)= 35cos θ+40sin θ+53  f(θ)=(√(35^2 +40^2 )) cos  (θ−α)+53  where α = tan^(−1) ((8/7))  f(θ)=(√(25(49+64))) cos (θ−α)+53   { ((f(θ)_(max)  = 5(√(113)) +53)),((f(θ)_(min)  = −5(√(113)) +53 )) :}
let{x3=5cosθx=3+5cosθy4=5sinθy=4+5sinθlet7(3+5cosθ)+8(4+5sinθ)=f(θ)f(θ)=35cosθ+40sinθ+53f(θ)=352+402cos(θα)+53whereα=tan1(87)f(θ)=25(49+64)cos(θα)+53{f(θ)max=5113+53f(θ)min=5113+53
Answered by mr W last updated on 06/May/21
an other way:  let 7x+8y=k  ⇒y=((k−7x)/8)  (x−3)^2 +(((k−7x)/8)−4)^2 =25  113x^2 −(14k−64)x+k^2 −64k=0  such that x∈R exists,  Δ=(14k−64)^2 −4×113×(k^2 −64k)≥0  ⇒k^2 −106k−16≤0  k_(1,2) =53±5(√(113))  ⇒53−5(√(113))≤k≤53+5(√(113))  i.e.  k_(min) =53−5(√(113))  k_(max) =53+5(√(113))
anotherway:let7x+8y=ky=k7x8(x3)2+(k7x84)2=25113x2(14k64)x+k264k=0suchthatxRexists,Δ=(14k64)24×113×(k264k)0k2106k160k1,2=53±5113535113k53+5113i.e.kmin=535113kmax=53+5113

Leave a Reply

Your email address will not be published. Required fields are marked *