Menu Close

If-x-5-2-6-then-x-1-x-




Question Number 133981 by bemath last updated on 26/Feb/21
If x = 5+2(√6) then ((x−1)/( (√x))) =?
$$\mathrm{If}\:{x}\:=\:\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:\mathrm{then}\:\frac{{x}−\mathrm{1}}{\:\sqrt{{x}}}\:=? \\ $$
Answered by Dwaipayan Shikari last updated on 26/Feb/21
x=5+2(√6) =((√3)+(√2))^2   (√x)−(1/( (√x)))=(√3)+(√2)−(√3)+(√2)=2(√2)
$${x}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\:=\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\sqrt{{x}}−\frac{\mathrm{1}}{\:\sqrt{{x}}}=\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$
Commented by malwan last updated on 26/Feb/21
((2(√6))/2) = (√6) = (√2)×(√3)  such that ((√2))^2 +((√3))^2  = 5  thank you sir shikari  and this method can be used  to find the square root of  complex numbers   very simple
$$\frac{\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{2}}\:=\:\sqrt{\mathrm{6}}\:=\:\sqrt{\mathrm{2}}×\sqrt{\mathrm{3}} \\ $$$${such}\:{that}\:\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:=\:\mathrm{5} \\ $$$${thank}\:{you}\:{sir}\:{shikari} \\ $$$${and}\:{this}\:{method}\:{can}\:{be}\:{used} \\ $$$${to}\:{find}\:{the}\:{square}\:{root}\:{of} \\ $$$${complex}\:{numbers}\: \\ $$$${very}\:{simple} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Feb/21
General way  (√(a+(√b)))=(√x)+(√y)  a+(√b)=x+y+2(√(xy))  a=x+y          b=4xy  x−y=(√(a^2 −b))  x=((a+(√(a^2 −b)))/2)   y=((a−(√(a^2 −b)))/2)     (√(a+(√b)))=(√((a+(√(a^2 −b)))/2))+(√((a−(√(a^2 −b)))/2))  (√(5+2(√6)))=(√(5+(√(24))))=(√((5+(√(25−24)))/2))+(√((5−(√(25−24)))/2))  =(√3)+(√2)
$${General}\:{way} \\ $$$$\sqrt{{a}+\sqrt{{b}}}=\sqrt{{x}}+\sqrt{{y}} \\ $$$${a}+\sqrt{{b}}={x}+{y}+\mathrm{2}\sqrt{{xy}} \\ $$$${a}={x}+{y}\:\:\:\:\:\:\:\:\:\:{b}=\mathrm{4}{xy} \\ $$$${x}−{y}=\sqrt{{a}^{\mathrm{2}} −{b}} \\ $$$${x}=\frac{{a}+\sqrt{{a}^{\mathrm{2}} −{b}}}{\mathrm{2}}\:\:\:{y}=\frac{{a}−\sqrt{{a}^{\mathrm{2}} −{b}}}{\mathrm{2}}\:\:\: \\ $$$$\sqrt{{a}+\sqrt{{b}}}=\sqrt{\frac{{a}+\sqrt{{a}^{\mathrm{2}} −{b}}}{\mathrm{2}}}+\sqrt{\frac{{a}−\sqrt{{a}^{\mathrm{2}} −{b}}}{\mathrm{2}}} \\ $$$$\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}=\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}=\sqrt{\frac{\mathrm{5}+\sqrt{\mathrm{25}−\mathrm{24}}}{\mathrm{2}}}+\sqrt{\frac{\mathrm{5}−\sqrt{\mathrm{25}−\mathrm{24}}}{\mathrm{2}}} \\ $$$$=\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}} \\ $$
Answered by malwan last updated on 26/Feb/21
x=5+2(√6)  ⇒((x−1)/( (√x))) = ((4+2(√6))/( (√(5+2(√6)))))×((√(5+2(√6)))/( (√(5+2(√6)))))  =((2(2+(√6))(√(5+2(√6))))/(5+2(√6)))×((5−2(√6))/(5−2(√6)))  = ((2(10+(√6)−12)(√(5+2(√6))))/(25−4×6))  = ((2((√6)−2)(√(5+2(√6))))/1)  = 2(√((6−4(√6)+4)(5+2(√6))))  = 2(√(2(5−2(√6))(5+2(√6))))  = 2(√(2(25−24))) =2(√(2×1)) = 2(√2)
$${x}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}} \\ $$$$\Rightarrow\frac{{x}−\mathrm{1}}{\:\sqrt{{x}}}\:=\:\frac{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{6}}}{\:\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}}×\frac{\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}}{\:\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}} \\ $$$$=\frac{\mathrm{2}\left(\mathrm{2}+\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}}{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}×\frac{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}} \\ $$$$=\:\frac{\mathrm{2}\left(\mathrm{10}+\sqrt{\mathrm{6}}−\mathrm{12}\right)\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}}{\mathrm{25}−\mathrm{4}×\mathrm{6}} \\ $$$$=\:\frac{\mathrm{2}\left(\sqrt{\mathrm{6}}−\mathrm{2}\right)\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}}{\mathrm{1}} \\ $$$$=\:\mathrm{2}\sqrt{\left(\mathrm{6}−\mathrm{4}\sqrt{\mathrm{6}}+\mathrm{4}\right)\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\right)} \\ $$$$=\:\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}\right)\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}\right)} \\ $$$$=\:\mathrm{2}\sqrt{\mathrm{2}\left(\mathrm{25}−\mathrm{24}\right)}\:=\mathrm{2}\sqrt{\mathrm{2}×\mathrm{1}}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *