Menu Close

If-x-cos-sin-and-y-cos2-Show-that-y-x-2-x-2-




Question Number 7608 by Tawakalitu. last updated on 06/Sep/16
If  x = cosΘ − sinΘ  and  y = cos2Θ  Show that,    y = x(√(2 − x^2 ))
Ifx=cosΘsinΘandy=cos2ΘShowthat,y=x2x2
Commented by sou1618 last updated on 06/Sep/16
(√(2−x^2 ))=(√(1+2cosθsinθ))  =∣cosθ+sinθ∣  so  x(√(2−x))=(cosθ−sinθ)∣cosθ+sinθ∣    y=cos2θ=cos^2 θ−sin^2 θ       =(cosθ−sinθ)(cosθ+sinθ)      when (cosθ+sinθ)≥0  y=x(√(2−x^2 ))  when (cosθ+sinθ)<0  y≠x(√(2−x^2 ))
2x2=1+2cosθsinθ=∣cosθ+sinθsox2x=(cosθsinθ)cosθ+sinθy=cos2θ=cos2θsin2θ=(cosθsinθ)(cosθ+sinθ)when(cosθ+sinθ)0y=x2x2when(cosθ+sinθ)<0yx2x2
Commented by Tawakalitu. last updated on 06/Sep/16
Thank you sir
Thankyousir
Commented by Tawakalitu. last updated on 06/Sep/16
i appreciate
iappreciate
Answered by sandy_suhendra last updated on 06/Sep/16
x(√(2−x^2 ))  =(cosθ−sinθ)(√(2(cos^2 θ+sin^2 θ)−(cosθ−sinθ)^2 ))  =(cosθ−sinθ)(√(2cos^2 θ+2sin^2 θ)−(cos^2 θ+sin^2 θ−2sinθcosθ)))  =(cosθ−sinθ)(√(cos^2 θ+sin^2 θ+2sinθcosθ))  =(cosθ−sinθ)(√((cosθ+sinθ)^2 ))  =(cosθ−sinθ)(cosθ+sinθ)  =cos^2 θ−sin^2 θ  =cos2θ  =y
x2x2=(cosθsinθ)2(cos2θ+sin2θ)(cosθsinθ)2=(cosθsinθ)2cos2θ+2sin2θ)(cos2θ+sin2θ2sinθcosθ)=(cosθsinθ)cos2θ+sin2θ+2sinθcosθ=(cosθsinθ)(cosθ+sinθ)2=(cosθsinθ)(cosθ+sinθ)=cos2θsin2θ=cos2θ=y
Commented by Tawakalitu. last updated on 06/Sep/16
i really appreciate your effort sir. thanks so much.
ireallyappreciateyoureffortsir.thankssomuch.
Commented by sou1618 last updated on 06/Sep/16
(√((cosθ+sinθ)^2 ))−(cosθ+sinθ)=^(??) 0  if θ=0  (√((1+0)^2 ))−(1+0)=0  ifθ=π  (√((0−1)^2 ))−(0−1)=2    I think (√a^2 )=∣a∣  e.g.  a=−2     (√((−2)^2 ))=2
(cosθ+sinθ)2(cosθ+sinθ)=??0ifθ=0(1+0)2(1+0)=0ifθ=π(01)2(01)=2Ithinka2=∣ae.g.a=2(2)2=2
Commented by Rasheed Soomro last updated on 07/Sep/16
I agree with you.
Iagreewithyou.

Leave a Reply

Your email address will not be published. Required fields are marked *