Menu Close

If-x-x-y-y-z-z-c-show-that-at-x-y-z-2-z-x-y-x-log-ex-1-




Question Number 74663 by TawaTawa last updated on 28/Nov/19
If    x^x  y^y  z^z    =   c       show that at     x  =  y  =  z        (∂^2 z/(∂x∂y))   =   − (x log ex)^(−1)
Ifxxyyzz=cshowthatatx=y=z2zxy=(xlogex)1
Answered by mind is power last updated on 28/Nov/19
⇒zlog(z)=log(c)−xlog(x)−ylog(y)  let f(z)=zlog(z)=log(c)−xlog(x)−ylog(y)  ⇒log(z)e^(log(z)) =f(z)  ⇒log(z)=W(f(z))⇒z=e^(W(f)) ,W lambertfunction  W′(t)=((W(t))/(t(1+W(t))))   Z=e^(W(f(x,y)))   ⇒W(f)=log(z)  (∂z/∂y)=(∂f/∂y)W′(f(x,y))e^(W(f))   =(−log(y)−1)((We^(W(f)) )/(f(1+W(f))))  =((−(log(y)+1).)/((1+W(f))))  (∂^2 Z/(∂x∂y))=(∂z/∂x).((−(log(y)+1))/(1+W(f)))=(log(y)+1).(((∂f/∂x).W′(f))/((1+W(f))^2 ))  =(log(y)+1).(((−1−log(x)).W(f))/(f(x,y).{1+W(f)}^3 ))  =((−(1+log(y))(1+log(x)).W(f(x,y)))/(zlogz(1+log(z))^3 )).  =((Log(z))/(zlogz(1+log(x)))  =−(z+zlog(e)(z))^(−1) =−(x+xln(x))^(−1)   x(1+ln(x))=x(ln(xe)⇒  =−(xln(xe))^(−1)
zlog(z)=log(c)xlog(x)ylog(y)letf(z)=zlog(z)=log(c)xlog(x)ylog(y)log(z)elog(z)=f(z)log(z)=W(f(z))z=eW(f),WlambertfunctionW(t)=W(t)t(1+W(t))Z=eW(f(x,y))W(f)=log(z)zy=fyW(f(x,y))eW(f)=(log(y)1)WeW(f)f(1+W(f))=(log(y)+1).(1+W(f))2Zxy=zx.(log(y)+1)1+W(f)=(log(y)+1).fx.W(f)(1+W(f))2=(log(y)+1).(1log(x)).W(f)f(x,y).{1+W(f)}3=(1+log(y))(1+log(x)).W(f(x,y))zlogz(1+log(z))3.=Log(z)zlogz(1+log(x)=(z+zlog(e)(z))1=(x+xln(x))1x(1+ln(x))=x(ln(xe)=(xln(xe))1
Commented by TawaTawa last updated on 28/Nov/19
Wow,  God bless you sir.
Wow,Godblessyousir.
Commented by mind is power last updated on 28/Nov/19
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *