Menu Close

if-x-y-gt-1-prove-x-2-y-1-y-2-x-1-8-




Question Number 78503 by jagoll last updated on 18/Jan/20
if x,y >1   prove (x^2 /(y−1))+(y^2 /(x−1))≥8
ifx,y>1provex2y1+y2x18
Answered by ~blr237~ last updated on 18/Jan/20
 We know that for all a,b∈R   (a−b)^2 ≥0⇒ 2ab≤a^2 +b^2   (∗)  let take a=(x/( (√(y−1)))) b=(y/( (√(x−1))))     a,b exist cause x>1 and y>1  Then  (∗) leads to   ((2xy)/( (√((x−1)(y−1))))) ≤(x^2 /(y−1))+(y^2 /(x−1))   we also have   2(2x)≤x^2 +4 ⇒ 4≤(x^2 /(x−1)) ⇒2≤ (x/( (√(x−1))))   samely we show 2≤(y/( (√(y−1))))   Finaly we get   8=2×2×2≤2((x/( (√(x−1)))))((y/( (√(y−1)))))≤(x^2 /(y−1)) +(y^2 /(x−1))
Weknowthatforalla,bR(ab)202aba2+b2()lettakea=xy1b=yx1a,bexistcausex>1andy>1Then()leadsto2xy(x1)(y1)x2y1+y2x1wealsohave2(2x)x2+44x2x12xx1samelyweshow2yy1Finalyweget8=2×2×22(xx1)(yy1)x2y1+y2x1
Commented by jagoll last updated on 18/Jan/20
thanks you sir
thanksyousir
Answered by behi83417@gmail.com last updated on 18/Jan/20
let:F(x,y)=(x^2 /(y−1))+(y^2 /(x−1))  (∂F/∂x)=((2x)/(y−1))−(y^2 /((x−1)^2 )),(∂F/∂y)=((−x^2 )/((y−1)^2 ))+((2y)/(x−1))  ⇒ { ((2x(x−1)^2 −y^2 (y−1)=0)),((2y(y−1)^2 −x^2 (x−1)=0)) :}⇒  ⇒ { ((2x^3 −4x^2 +2x−y^3 +y^2 =0   (i))),((2y^3 −4y^2 +2y−x^3 +x^2 =0    (ii))) :}  ⇒ { ((x^3 +y^3 −3(x^2 +y^2 )+2(x+y)=0)),((3(x^3 −y^3 )−5(x^2 −y^2 )+2(x−y)=0)) :}  ⇒^((x/y)=m)  { ((m^3 +1−3(m^2 +1)+2(m+1)=0)),((3(m^3 −1)−5(m^2 −1)+2(m−1)=0)) :}  ⇒ { ((m^3 −3m^2 +2m=0)),((3m^3 −5m^2 +2m=0)) :}⇒m=0  ⇒ { ((m^2 −3m+2=0⇒m=1,2)),((3m^2 −5m+2=0⇒m=1,(2/3))) :}  m=0⇒x=0[not ok :x>1]  1)m=1⇒x=y⇒2x(x−1)^2 −x^2 (x−1)=0  ⇒(x−1)(x^2 −2x)=0⇒x=2=y⇒F(2,2)=8  2)m=2⇒x=2y⇒4y(2y−1)^2 −y^2 (y−1)=0  ⇒y[16y^2 −16y+4−y^2 +y]=0  ⇒15y^2 −15y+4=0⇒▲=225−16×15<0  3)m=(2/3)⇒x=(2/3)y⇒(4/3)y((2/3)y−1)^2 −y^2 (y−1)=0  ⇒y[16y^2 −48y+36−27y^2 +27y]=0  ⇒11y^2 +21y−36=0⇒▲=21^2 +44×36  ⇒[y=((−21±45)/(22))=((12)/(11)),−3⇒x=(8/(11)),−2]  ⇒F((8/(11)),((12)/(11)))=(((144)/(121))/((8/(11))−1))+(((64)/(121))/(((12)/(11))−1))=  =((144)/(−33))+((64)/(11))=((64×33−11×144)/(33))=16>8  [(x,y)=(−2,−3)  not ok :x,y>1]  ⇒mimF=8
let:F(x,y)=x2y1+y2x1Fx=2xy1y2(x1)2,Fy=x2(y1)2+2yx1{2x(x1)2y2(y1)=02y(y1)2x2(x1)=0{2x34x2+2xy3+y2=0(i)2y34y2+2yx3+x2=0(ii){x3+y33(x2+y2)+2(x+y)=03(x3y3)5(x2y2)+2(xy)=0xy=m{m3+13(m2+1)+2(m+1)=03(m31)5(m21)+2(m1)=0{m33m2+2m=03m35m2+2m=0m=0{m23m+2=0m=1,23m25m+2=0m=1,23m=0x=0[notok:x>1]1)m=1x=y2x(x1)2x2(x1)=0(x1)(x22x)=0x=2=yF(2,2)=82)m=2x=2y4y(2y1)2y2(y1)=0y[16y216y+4y2+y]=015y215y+4=0=22516×15<03)m=23x=23y43y(23y1)2y2(y1)=0y[16y248y+3627y2+27y]=011y2+21y36=0=212+44×36[y=21±4522=1211,3x=811,2]F(811,1211)=1441218111+6412112111==14433+6411=64×3311×14433=16>8[(x,y)=(2,3)notok:x,y>1]mimF=8
Answered by MJS last updated on 18/Jan/20
let p, λ >0; x=1+p∧y=1+λp  (x^2 /(y−1))+(y^2 /(x−1))<8  (((λ^3 +1)p^2 +2(λ^2 +1)p+λ+1)/(λp))<8  p^2 +((2(λ^2 −4λ+1))/(λ^3 +1))p+(1/(λ^2 −λ+1))<0  let p=q−((λ^2 −4λ+1)/(λ^3 +1))  q^2 +((9λ(λ−1)^2 )/((λ+1)^2 (λ^2 −λ+1)^2 ))<0  but q^2 >0∧λ>0 ⇒ no solution  ⇒  (x^2 /(y−1))+(y^2 /(x−1))<8 is wrong  ⇒  (x^2 /(y−1))+(y^2 /(x−1))≥8
letp,λ>0;x=1+py=1+λpx2y1+y2x1<8(λ3+1)p2+2(λ2+1)p+λ+1λp<8p2+2(λ24λ+1)λ3+1p+1λ2λ+1<0letp=qλ24λ+1λ3+1q2+9λ(λ1)2(λ+1)2(λ2λ+1)2<0butq2>0λ>0nosolutionx2y1+y2x1<8iswrongx2y1+y2x18

Leave a Reply

Your email address will not be published. Required fields are marked *