If-x-y-z-is-a-primitive-Pythagorean-triple-prove-that-x-y-and-x-y-are-congruent-modulo-8-to-either-1-or-7- Tinku Tara June 3, 2023 Number Theory 0 Comments FacebookTweetPin Question Number 70525 by Rasheed.Sindhi last updated on 05/Oct/19 Ifx,y,zisaprimitivePythagoreantriple,provethatx+yandx−yarecongruentmodulo8toeither1or7. Answered by mind is power last updated on 07/Oct/19 x=2aby=a2−b2z=a2+b2x,y,zprimitive⇒gcd(a,b)=1andeithera=2k&b=2w+1becauseifgcd(a,b)=a⩾2⇒a∣x,y,zabviousandifa=b[2]⇒2∣x,y,zabviousx=2(2k)(2w+1)=8kw+4k=4k(8)y=(4k2)−4w2−4w−1y=4k2−4w(w+1)−1=4k2−1(8)cause2∣w(w+1),∀w∈INjustuseeitherw=2sorw=2s+1toseethatifkork=0(2)⇒x=0(8),y=−1(8)⇒{x−y=1(8)x+y=−1(8)=7(8)k=1(2)⇒x=4(8),y=3(8)⇒{x−y=1(8)x+y=7(8)⇒x+y,x−ycongurentmodulo8toeither1or7 Commented by Rasheed.Sindhi last updated on 08/Oct/19 Nodoubt,mindispower! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-70520Next Next post: advanced-calculus-evaluate-Im-0-pi-2-li-2-sin-x-li-2-csc-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.