Menu Close

If-xy-3-sin-xy-find-d-2-y-dx-2-Please-i-need-help-thanks-for-your-effort-




Question Number 5855 by sanusihammed last updated on 01/Jun/16
If   xy^(3 )  =  sin(xy)    find    (d^2 y/dx^2 )    Please i need help. thanks for your effort
Ifxy3=sin(xy)findd2ydx2Pleaseineedhelp.thanksforyoureffort
Answered by 123456 last updated on 02/Jun/16
xy^3 =sin(xy)  ((d(xy^3 ))/dx)=((d[sin(xy)])/dx)  (dx/dx)y^3 +x((d(y^3 ))/dx)=((d[sin(xy)])/(d(xy)))∙((d(xy))/dx)  y^3 +x((d(y^3 ))/dy)∙(dy/dx)=cos(xy)∙((dx/dx)y+x(dy/dx))  y^3 +3xy^2 (dy/dx)=cos(xy)(y+x(dy/dx))  y^3 +3xy^2 (dy/dx)=cos(xy)y+cos(xy)x(dy/dx)  [3xy^2 −cos(xy)x](dy/dx)=cos(xy)y−y^3   (dy/dx)=((cos(xy)y−y^3 )/(3xy^2 −cos(xy)x))  continue
xy3=sin(xy)d(xy3)dx=d[sin(xy)]dxdxdxy3+xd(y3)dx=d[sin(xy)]d(xy)d(xy)dxy3+xd(y3)dydydx=cos(xy)(dxdxy+xdydx)y3+3xy2dydx=cos(xy)(y+xdydx)y3+3xy2dydx=cos(xy)y+cos(xy)xdydx[3xy2cos(xy)x]dydx=cos(xy)yy3dydx=cos(xy)yy33xy2cos(xy)xcontinue
Commented by sanusihammed last updated on 02/Jun/16
It is the (d^2 y/(dx^2  )) that i really need
Itisthed2ydx2thatireallyneed
Answered by Yozzii last updated on 02/Jun/16
xy^3 =sin(xy)  Implicit differentiation⇒y^3 +3xy^2 y′=(xy′+y)cos(xy)⇒y′=((y^3 −ycos(xy))/(x(cos(xy)−3y^2 )))=((y(y^2 −cos(xy)))/(x(cos(xy)−3y^2 )))  Implicit differentiation again⇒3y^2 y^′ +3xy^2 y′′+(3y^2 +6xyy^′ )y^′   =(xy′′+y′+y′)cos(xy)−(xy′+y)^2 sin(xy)  3xy^2 y′′+6yy′(y+xy′)=xy′′cos(xy)+2y′cos(xy)−(xy′+y)^2 sin(xy)  x(3y^2 −cos(xy))y′′=y′(2cos(xy)−6y(y+xy′))−(xy′+y)^2 sin(xy)  y′′=((y′(2cos(xy)−6y(y+xy′))−xy^3 (xy′+y)^2 )/(x(3y^2 −cos(xy))))  Let u=x(3y^2 −cos(xy)),v=y(y^2 −cos(xy))  ∴y′=(v/u)    y′′=(((v/u)(2cos(xy)−6y(y+x(v/u)))−xy^3 (((xv)/u)+y)^2 )/u)  y′′=((v(2ucos(xy)−6y(yu+xv))−xy^3 (xv+yu)^2 )/u^3 )  y′′=((2vucos(xy)−6yv(yu+xv)−xy^3 (xv+yu)^2 )/u^3 )  xv+yu=xy(y^2 −cos(xy))+yx(3y^2 −cos(xy))  xv+yu=2xy(2y^2 −cos(xy))    y′′=((2y(y^2 −cos(xy))(3y^2 −cos(xy))cos(xy)−12y^3 (2y^2 −cos(xy))(y^2 −cos(xy))−4x^2 y^5 (2y^2 −cos(xy))^2 )/(x^2 (3y^2 −cos(xy))^3 ))
xy3=sin(xy)Implicitdifferentiationy3+3xy2y=(xy+y)cos(xy)y=y3ycos(xy)x(cos(xy)3y2)=y(y2cos(xy))x(cos(xy)3y2)Implicitdifferentiationagain3y2y+3xy2y+(3y2+6xyy)y=(xy+y+y)cos(xy)(xy+y)2sin(xy)3xy2y+6yy(y+xy)=xycos(xy)+2ycos(xy)(xy+y)2sin(xy)x(3y2cos(xy))y=y(2cos(xy)6y(y+xy))(xy+y)2sin(xy)y=y(2cos(xy)6y(y+xy))xy3(xy+y)2x(3y2cos(xy))Letu=x(3y2cos(xy)),v=y(y2cos(xy))y=vuy=vu(2cos(xy)6y(y+xvu))xy3(xvu+y)2uy=v(2ucos(xy)6y(yu+xv))xy3(xv+yu)2u3y=2vucos(xy)6yv(yu+xv)xy3(xv+yu)2u3xv+yu=xy(y2cos(xy))+yx(3y2cos(xy))xv+yu=2xy(2y2cos(xy))y=2y(y2cos(xy))(3y2cos(xy))cos(xy)12y3(2y2cos(xy))(y2cos(xy))4x2y5(2y2cos(xy))2x2(3y2cos(xy))3
Commented by sanusihammed last updated on 02/Jun/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *