Menu Close

if-xy-y-2-1-Find-d-2-y-dx-at-0-1-




Question Number 8115 by uchechukwu okorie favour last updated on 30/Sep/16
if xy+y^2 =1. Find (d^2 y/dx) at (0,1)
ifxy+y2=1.Findd2ydxat(0,1)
Answered by prakash jain last updated on 30/Sep/16
x(dy/dx)+y+2y(dy/dx)=0...(i)  x(d^2 y/dx^2 )+(dy/dx)+(dy/dx)+2y(d^2 y/dx^2 )+2((dy/dx))^2   ...(ii)  (x+2y)(d^2 y/dx^2 )=−2((dy/dx)+((dy/dx)))^2   from (i)  (dy/dx)=−(y/(x+2y))  (d^2 y/dx^2 )=((−2(−(y/(x+2y))+(−(y/(x+2y)))^2 ))/((x+2y)))  x=0,y=1  (d^2 y/dx^2 )=((−2(−(1/2)+(1/4)))/2)=−1(−(1/4))=(1/4)
xdydx+y+2ydydx=0(i)xd2ydx2+dydx+dydx+2yd2ydx2+2(dydx)2(ii)(x+2y)d2ydx2=2(dydx+(dydx))2from(i)dydx=yx+2yd2ydx2=2(yx+2y+(yx+2y)2)(x+2y)x=0,y=1d2ydx2=2(12+14)2=1(14)=14
Answered by mrW1 last updated on 13/Feb/17
x=((1−y^2 )/y)=(1/y)−y  (dx/dy)=−(1/y^2 )−1=−((1+y^2 )/y^2 )  g=(dy/dx)=(1/(dx/dy))=−(y^2 /(1+y^2 ))=−1+(1/(1+y^2 ))  (dg/dy)=−((2y)/((1+y^2 )^2 ))  (d^2 y/dx^2 )=(dg/dx)=(dg/dy)×(dy/dx)=((2y^3 )/((1+y^2 )^3 ))=2((y/(1+y^2 )))^3   with y=1, (d^2 y/dx^2 )=(1/4)
x=1y2y=1yydxdy=1y21=1+y2y2g=dydx=1dxdy=y21+y2=1+11+y2dgdy=2y(1+y2)2d2ydx2=dgdx=dgdy×dydx=2y3(1+y2)3=2(y1+y2)3withy=1,d2ydx2=14

Leave a Reply

Your email address will not be published. Required fields are marked *