Question Number 4487 by Rasheed Soomro last updated on 31/Jan/16
$${If}\:\:{y}^{\mathrm{2}} +\mathrm{3}{uy}−\mathrm{5}{u}^{\mathrm{2}} =\mathrm{2}\:,\:\:\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{tu}−\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\: \\ $$$${and}\:\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{xt}−{t}^{\mathrm{2}} =\mathrm{0}\:,{find}\:\:\frac{{dy}}{{dx}}\:\:{and}\:\:\:\frac{{du}}{{dt}}\:. \\ $$
Answered by Yozzii last updated on 31/Jan/16
$$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}×\frac{{du}}{{dx}}=\frac{{dy}}{{du}}\left(\frac{{du}}{{dt}}×\frac{{dt}}{{dx}}\right)\:\left({chain}\:{rule}\right) \\ $$$${Let}\:\left(\mathrm{1}\right):\:\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{tu}−\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\: \\ $$$${Implicitly}\:{differentiating}\:\left(\mathrm{1}\right)\:{w}.{r}.{t}\:{t} \\ $$$$\Rightarrow\:\mathrm{4}{t}−\mathrm{2}\left({t}\frac{{du}}{{dt}}+{u}\right)−\mathrm{6}{u}\frac{{du}}{{dt}}=\mathrm{0} \\ $$$$−\mathrm{2}{t}\frac{{du}}{{dt}}−\mathrm{6}{u}\frac{{du}}{{dt}}=\mathrm{2}{u}−\mathrm{4}{t} \\ $$$$\frac{{du}}{{dt}}=\frac{\mathrm{2}{u}−\mathrm{4}{t}}{−\left(\mathrm{2}{t}+\mathrm{6}{u}\right)}=\frac{\mathrm{2}{t}−{u}}{\mathrm{3}{u}+{t}}\:\:\:\:\left(\mathrm{3}{u}\neq−{t}\right) \\ $$$$ \\ $$$${Let}\:\left(\mathrm{2}\right):\:\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{xt}−{t}^{\mathrm{2}} =\mathrm{0}. \\ $$$${Implicitly}\:{differentiating}\:\left(\mathrm{2}\right)\:{w}.{r}.{t} \\ $$$${t}\:{gives}\: \\ $$$$\mathrm{10}{x}\frac{{dx}}{{dt}}+\mathrm{4}\left({x}+{t}\frac{{dx}}{{dt}}\right)−\mathrm{2}{t}=\mathrm{0} \\ $$$$\left(\mathrm{10}{x}+\mathrm{4}{t}\right)\frac{{dx}}{{dt}}=\mathrm{2}{t}−\mathrm{4}{x} \\ $$$$\frac{{dx}}{{dt}}=\frac{\mathrm{2}{t}−\mathrm{4}{x}}{\mathrm{4}{t}+\mathrm{10}{x}}=\frac{{t}−\mathrm{2}{x}}{\mathrm{2}{t}+\mathrm{5}{x}}\Rightarrow\:\frac{{dt}}{{dx}}=\frac{\mathrm{2}{t}+\mathrm{5}{x}}{{t}−\mathrm{2}{x}}\:\:\:\left({t}\neq\mathrm{2}{x}\right) \\ $$$$ \\ $$$${Let}\:\left(\mathrm{3}\right):\:{y}^{\mathrm{2}} +\mathrm{3}{yu}−\mathrm{5}{u}^{\mathrm{2}} =\mathrm{2}. \\ $$$${Differentiating}\:\left(\mathrm{3}\right)\:{implicitly}\:{w}.{r}.{t}\:{u} \\ $$$$\Rightarrow\:\mathrm{2}{y}\frac{{dy}}{{du}}+\mathrm{3}{y}+\mathrm{3}{u}\frac{{dy}}{{du}}−\mathrm{10}{u}=\mathrm{0} \\ $$$$\left(\mathrm{2}{y}+\mathrm{3}{u}\right)\frac{{dy}}{{du}}=\mathrm{10}{u}−\mathrm{3}{y} \\ $$$$\frac{{dy}}{{du}}=\frac{\mathrm{10}{u}−\mathrm{3}{y}}{\mathrm{2}{y}+\mathrm{3}{u}} \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{\left(\mathrm{10}{u}−\mathrm{3}{y}\right)\left(\mathrm{2}{t}−{u}\right)\left(\mathrm{2}{t}+\mathrm{5}{x}\right)}{\left(\mathrm{2}{y}+\mathrm{3}{u}\right)\left(\mathrm{3}{u}+{t}\right)\left({t}−\mathrm{2}{x}\right)} \\ $$$$ \\ $$