Menu Close

If-y-2sinx-tanx-prove-that-d-2-y-dx-2-2sinx-sec-3-x-1-Any-detailed-solution-please-




Question Number 141769 by 7770 last updated on 23/May/21
If  y=2sinx+tanx, prove that  (d^2 y/dx^2 )=2sinx(sec^3 x−1)  Any detailed solution please.
$$\boldsymbol{\mathrm{If}}\:\:\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{tanx}},\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }=\mathrm{2}\boldsymbol{\mathrm{sinx}}\left(\boldsymbol{\mathrm{sec}}^{\mathrm{3}} \boldsymbol{\mathrm{x}}−\mathrm{1}\right) \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{detailed}}\:\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{please}}. \\ $$
Answered by physicstutes last updated on 23/May/21
y = 2 sin x + tan x  (dy/dx) = 2 cos x + sec^2 x   (d^2 y/dx^2 ) = −2 sin x +(((cos^2 x)(0)−(1)(2cos x)(−sin x))/(cos^4 x))  (d^2 y/dx^2 ) = ((2 sin x cos x)/(cos^4 x)) − 2 sin x = ((2sin x)/(cos^3 x))−2sin x = 2sin x((1/(cos^3 x))−1) = 2sin x(sec^3 x−1)  as required.
$${y}\:=\:\mathrm{2}\:\mathrm{sin}\:{x}\:+\:\mathrm{tan}\:{x} \\ $$$$\frac{{dy}}{{dx}}\:=\:\mathrm{2}\:\mathrm{cos}\:{x}\:+\:\mathrm{sec}^{\mathrm{2}} {x} \\ $$$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:−\mathrm{2}\:\mathrm{sin}\:{x}\:+\frac{\left(\mathrm{cos}^{\mathrm{2}} {x}\right)\left(\mathrm{0}\right)−\left(\mathrm{1}\right)\left(\mathrm{2cos}\:{x}\right)\left(−\mathrm{sin}\:{x}\right)}{\mathrm{cos}^{\mathrm{4}} {x}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{\mathrm{cos}^{\mathrm{4}} {x}}\:−\:\mathrm{2}\:\mathrm{sin}\:{x}\:=\:\frac{\mathrm{2sin}\:{x}}{\mathrm{cos}^{\mathrm{3}} {x}}−\mathrm{2sin}\:{x}\:=\:\mathrm{2sin}\:{x}\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{3}} {x}}−\mathrm{1}\right)\:=\:\mathrm{2sin}\:{x}\left(\mathrm{sec}^{\mathrm{3}} {x}−\mathrm{1}\right) \\ $$$$\mathrm{as}\:\mathrm{required}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *