Menu Close

If-y-secx-tanx-p-where-p-is-a-constant-prove-that-cosx-dy-dx-py-0-




Question Number 4925 by sanusihammed last updated on 22/Mar/16
If y = (secx + tanx)^p  . where p is a constant   prove that    cosx dy/dx − py = 0
Ify=(secx+tanx)p.wherepisaconstantprovethatcosxdy/dxpy=0
Answered by prakash jain last updated on 22/Mar/16
(dy/dx)=p(sec x+tan x)^(p−1) (sec x tan x+sec^2 x)  (dy/dx)=p(sec x+tan x)^(p−1) sec x(sec x+tan x)  (dy/dx)=p sec x(sec x+tan x)^p   (dy/dx)=p sec xy  cos x(dy/dx)−py=0
dydx=p(secx+tanx)p1(secxtanx+sec2x)dydx=p(secx+tanx)p1secx(secx+tanx)dydx=psecx(secx+tanx)pdydx=psecxycosxdydxpy=0
Answered by Rojaye Shegz last updated on 30/Mar/16
We start here;  ∫sec x dx = log(sec x +tan x)  p∫sec x dx = log(sec x +tan x)^p   p∫sec x dx = log y  p×(d/dx)(∫sec x dx)=(1/y)(dy/dx)  p×y×sec x=(dy/dx)  py=cos x(dy/dx)  ∴ cos x(dy/dx)−py=0                                      ■
Westarthere;secxdx=log(secx+tanx)psecxdx=log(secx+tanx)ppsecxdx=logyp×ddx(secxdx)=1ydydxp×y×secx=dydxpy=cosxdydxcosxdydxpy=0◼

Leave a Reply

Your email address will not be published. Required fields are marked *