if-y-x-log-a-xy-find-dy-dx- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 9109 by tawakalitu last updated on 18/Nov/16 ify=xlogaxyfinddydx Answered by mrW last updated on 19/Nov/16 y=xlogaxylogay=(logax)(logaxy)logay=(logax)(logax+logay)letu=logay,v=logaxu=v(v+u)(1−v)u=v2u=v21−vlogay=v21−vy=av21−v=a(logax)21−logaxdydv=(lna)av21−v(2v1−v+v2(1−v)2)=(lna)(av21−v)(v(2−v)(1−v)2)dvdx=1(lna)xdydx=dydv⋅dvdx=(lna)(av21−v)(v(2−v)(1−v)2)(1(lna)x)=1x⋅v(2−v)(1−v)2⋅av21−vdydx=(logax)(2−logax)x(1−logax)2⋅a(logax)21−logax Commented by tawakalitu last updated on 19/Nov/16 Ireallyappreciateyoureffortsir.Godblessyou. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-4-x-2-4-dx-Next Next post: 0-1-x-2-x-2-1-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.