Menu Close

if-y-x-log-a-xy-find-dy-dx-




Question Number 9109 by tawakalitu last updated on 18/Nov/16
if   y = x^(log_a xy)   find  (dy/dx)
ify=xlogaxyfinddydx
Answered by mrW last updated on 19/Nov/16
y=x^(log_a xy)   log_a y=(log_a x)(log_a xy)  log_a y=(log_a x)(log_a x+log_a y)  let u=log_a y, v=log_a x  u=v(v+u)  (1−v)u=v^2   u=(v^2 /(1−v))  log_a y=(v^2 /(1−v))  y=a^(v^2 /(1−v)) =a^(((log _a x)^2 )/(1−log _a x))   (dy/dv)=(ln a)a^(v^2 /(1−v)) (((2v)/(1−v))+(v^2 /((1−v)^2 )))=(ln a)(a^(v^2 /(1−v)) )(((v(2−v))/((1−v)^2 )))  (dv/dx)=(1/((ln a)x))  (dy/dx)=(dy/dv)∙(dv/dx)=(ln a)(a^(v^2 /(1−v)) )(((v(2−v))/((1−v)^2 )))((1/((ln a)x)))  =(1/x)∙((v(2−v))/((1−v)^2 ))∙a^(v^2 /(1−v))   (dy/dx)=(((log _a x)(2−log _a x))/(x(1−log _a x)^2 ))∙a^(((log _a x)^2 )/(1−log _a x))
y=xlogaxylogay=(logax)(logaxy)logay=(logax)(logax+logay)letu=logay,v=logaxu=v(v+u)(1v)u=v2u=v21vlogay=v21vy=av21v=a(logax)21logaxdydv=(lna)av21v(2v1v+v2(1v)2)=(lna)(av21v)(v(2v)(1v)2)dvdx=1(lna)xdydx=dydvdvdx=(lna)(av21v)(v(2v)(1v)2)(1(lna)x)=1xv(2v)(1v)2av21vdydx=(logax)(2logax)x(1logax)2a(logax)21logax
Commented by tawakalitu last updated on 19/Nov/16
I really appreciate your effort sir. God bless  you.
Ireallyappreciateyoureffortsir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *