Menu Close

If-z-1-6-cos-pi-4-sin-pi-4-and-z-2-2-cos-pi-5-i-sin-pi-5-calculate-z-1-z-2-




Question Number 72787 by Maclaurin Stickker last updated on 02/Nov/19
If z_1 =6(cos (π/4)+sin (π/4)) and  z_2 =2(cos (π/5)+i×sin (π/5)) calculate (z_1 /z_2 ).
Ifz1=6(cosπ4+sinπ4)andz2=2(cosπ5+i×sinπ5)calculatez1z2.
Commented by MJS last updated on 02/Nov/19
z_1  ∈R???
z1R???
Answered by MJS last updated on 02/Nov/19
z_1 =6(cos (π/4) +sin (π/4))=6(√2)  z_2 =2(cos (π/5)+i×sin (π/5))=2e^(i(π/5)) =((1+(√5))/2)+((√(10−2(√5)))/2)i  ⇒ (z_1 /z_2 )=6(√2)×(1/2)e^(−i(π/5)) =3(√2)e^(−i(π/5)) =3(√2)(cos (π/5) −i×sin (π/5))=  =((3(√2)(1+(√5)))/4)−((3(√(5−(√5))))/2)i  or  z_1 =6(cos (π/4) +i×sin (π/4))=6e^(i(π/4)) =3(√2)+3(√2)i  z_2 =2(cos (π/5)+i×sin (π/5))=2e^(i(π/5)) =((1+(√5))/2)+((√(10−2(√5)))/2)i  ⇒ (z_1 /z_2 )=6e^(i(π/4)) ×(1/2)e^(−i(π/5)) =3e^(i(π/(20))) =3(cos (π/(20)) +sin (π/(20)))=  =((3((√2)(1+(√5))+2(√(5−(√5)))))/8)+((3((√2)(1+(√5))−2(√(5−(√5)))))/8)i
z1=6(cosπ4+sinπ4)=62z2=2(cosπ5+i×sinπ5)=2eiπ5=1+52+10252iz1z2=62×12eiπ5=32eiπ5=32(cosπ5i×sinπ5)==32(1+5)43552iorz1=6(cosπ4+i×sinπ4)=6eiπ4=32+32iz2=2(cosπ5+i×sinπ5)=2eiπ5=1+52+10252iz1z2=6eiπ4×12eiπ5=3eiπ20=3(cosπ20+sinπ20)==3(2(1+5)+255)8+3(2(1+5)255)8i
Commented by Maclaurin Stickker last updated on 03/Nov/19
Thank you, sir MJS.
Thankyou,sirMJS.

Leave a Reply

Your email address will not be published. Required fields are marked *