Menu Close

If-z-1-and-z-2-are-complex-numbers-such-that-z-2-1-and-z-1-2z-2-2-z-1-z-2-1-then-z-1-is-equal-to-




Question Number 140442 by EnterUsername last updated on 07/May/21
If z_1  and z_2  are complex numbers such that ∣z_2 ∣≠1 and  ∣(z_1 −2z_2 )/(2−z_1 z_2 ^� )∣=1, then ∣z_1 ∣ is equal to _____.
Ifz1andz2arecomplexnumberssuchthatz2∣≠1and(z12z2)/(2z1z¯2)∣=1,thenz1isequalto_____.
Answered by mr W last updated on 08/May/21
∣((r_1 e^(θ_1 i) −2r_2 e^(θ_2 i) )/(2−r_1 e^(θ_1 i) r_2 e^(−θ_2 i) ))∣=1  ∣(((r_1 e^((θ_1 −θ_2 )i) −2r_2 )e^(θ_2 i) )/(2−r_1 r_2 e^((θ_1 −θ_2 )i) ))∣=1  ∣(((r_1 e^(θ_3 i) −2r_2 )e^(θ_2 i) )/(2−r_1 r_2 e^(θ_3 i) ))∣=1  ∣(((√((r_1 cos θ_3 −2r_2 )^2 +(r_1 sin θ_3 )^2 ))e^(θ_4 i) e^(θ_2 i) )/( (√((2−r_1 r_2 cos θ_3 )^2 +(−r_1 r_2 sin θ_3 )^2 ))e^(θ_5 i) ))∣=1  ∣((√(r_1 ^2 +4r_2 ^2 −4r_1 r_2 cos θ_3 ))/( (√(4+r_1 ^2 r_2 ^2 −4r_1 r_2 cos θ_3 )))) e^(θ_6 i) ∣=1  ((√(r_1 ^2 +4r_2 ^2 −4r_1 r_2 cos θ_3 ))/( (√(4+r_1 ^2 r_2 ^2 −4r_1 r_2 cos θ_3 ))))=1  r_1 ^2 +4r_2 ^2 =4+r_1 ^2 r_2 ^2   r_1 ^2 (1−r_2 ^2 )=4(1−r_2 ^2 )  r_1 ^2 =4 since r_2 ≠1  ⇒r_1 =2=∣z_1 ∣
r1eθ1i2r2eθ2i2r1eθ1ir2eθ2i∣=1(r1e(θ1θ2)i2r2)eθ2i2r1r2e(θ1θ2)i∣=1(r1eθ3i2r2)eθ2i2r1r2eθ3i∣=1(r1cosθ32r2)2+(r1sinθ3)2eθ4ieθ2i(2r1r2cosθ3)2+(r1r2sinθ3)2eθ5i∣=1r12+4r224r1r2cosθ34+r12r224r1r2cosθ3eθ6i∣=1r12+4r224r1r2cosθ34+r12r224r1r2cosθ3=1r12+4r22=4+r12r22r12(1r22)=4(1r22)r12=4sincer21r1=2=∣z1
Commented by EnterUsername last updated on 12/May/21
Thank you Sir
ThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *