Menu Close

If-z-1-z-2-and-z-3-are-the-vertices-of-a-right-angled-isos-celes-triangle-described-in-counter-clock-sense-and-right-angled-at-z-3-then-z-1-z-2-2-is-equal-to-A-z-1-z-3-z-3-z-2-




Question Number 139838 by EnterUsername last updated on 01/May/21
If z_1 , z_2  and z_3  are the vertices of a right-angled isos-  celes triangle described in counter clock sense and  right angled at z_3 , then (z_1 −z_2 )^2  is equal to   (A) (z_1 −z_3 )(z_3 −z_2 )                    (B) 2(z_1 −z_3 )(z_3 −z_2 )  (C) 3(z_1 −z_3 )(z_3 −z_2 )                  (D) 3(z_3 −z_1 )(z_3 −z_2 )
Ifz1,z2andz3aretheverticesofarightangledisoscelestriangledescribedincounterclocksenseandrightangledatz3,then(z1z2)2isequalto(A)(z1z3)(z3z2)(B)2(z1z3)(z3z2)(C)3(z1z3)(z3z2)(D)3(z3z1)(z3z2)
Answered by mr W last updated on 02/May/21
Commented by mr W last updated on 02/May/21
let z_1 −z_3 =re^(θi)   ⇒z_3 −z_2 =re^((θ−(π/2))i)   ⇒z_1 −z_2 =(√2)re^((θ−(π/4))i)   (z_1 −z_2 )^2 =2r^2 e^((2θ−(π/2))i)                      =2re^(θi) re^((θ−(π/2))i)                      =2(z_1 −z_3 )(z_3 −z_2 )  ⇒answer (B)
letz1z3=reθiz3z2=re(θπ2)iz1z2=2re(θπ4)i(z1z2)2=2r2e(2θπ2)i=2reθire(θπ2)i=2(z1z3)(z3z2)answer(B)
Commented by EnterUsername last updated on 02/May/21
Thank You, Sir
ThankYou,Sir
Commented by EnterUsername last updated on 02/May/21
Please Sir, how did you get the angle between z_1 −z_2  and  the horizontal axes origin to be θ−(π/4) ? I′m not able to   easily notice that.
PleaseSir,howdidyougettheanglebetweenz1z2andthehorizontalaxesorigintobeθπ4?Imnotabletoeasilynoticethat.
Commented by mr W last updated on 02/May/21
Commented by EnterUsername last updated on 02/May/21
Oh wow ! Thanks a lot.
Ohwow!Thanksalot.

Leave a Reply

Your email address will not be published. Required fields are marked *