Menu Close

If-z-1-z-2-and-z-3-are-vertices-of-an-equilateral-traingle-inscribed-in-the-circle-z-2-and-if-z-1-1-i-3-then-find-the-value-of-z-2-and-z-3-




Question Number 229 by ssahoo last updated on 25/Jan/15
If z_1 , z_2  and z_3  are vertices of an equilateral  traingle inscribed in the circle ∣z∣=2 and if  z_1 =1+i(√3), then find the value of z_2  and z_3 .
Ifz1,z2andz3areverticesofanequilateraltraingleinscribedinthecirclez∣=2andifz1=1+i3,thenfindthevalueofz2andz3.
Answered by 123456 last updated on 16/Dec/14
∣z_1 ∣=2  z_1 =(2/2)(1+i(√3))  =2((1/2)+i((√3)/2))  =2(cos (π/3)+isin (π/3))  =2e^((π/3)i)   since z_1 ,z_2 ,z_3  are vertice of a equilatery triangle escribed into a circle at origin, then the other points are defased by ((2π)/3)  then  z_2 =z_1 e^(((2π)/3)i)   =2e^((1+2)(π/3)i)   =2e^(πi)   =2(cos π+isin π)  =−2  z_3 =z_2 e^(((2π)/3)i) =z_1 e^(−((2π)/3)i)   =2e^(πi) e^(((2π)/3)i) =2e^((π/3)i) e^(−((2π)/3)i)   =2e^((1+(2/3))πi) =2e^((1−2)(π/3)i)   =2e^(((5π)/3)i) =2e^(−(π/3)i)   =2(cos ((5π)/3)+isin ((5π)/3))=2(cos −(π/3)+isin −(π/3))  =2((1/2)−i((√3)/2))=2(cos (π/3)−isin (π/3))  =1−i(√3)  so  {z_1 ,z_2 ,z_3 }={1+i(√3),−2,1−i(√3)}  solution of (a≠0)  a[z−(1+i(√3))][z−(−2)][z−(1−i(√3))]=0  a[(z−1)−i(√3)][(z−1)+i(√3)](z+2)=0  a[(z−1)^2 +3](z+2)=0  a(z^2 −2z+1+3)(z+2)=0  a(z^2 −2z+4)(z+2)=0  a(z^3 −2z^2 +4z+2z^2 −4z+8)=0  a(z^3 +8)=0
z1∣=2z1=22(1+i3)=2(12+i32)=2(cosπ3+isinπ3)=2eπ3isincez1,z2,z3areverticeofaequilaterytriangleescribedintoacircleatorigin,thentheotherpointsaredefasedby2π3thenz2=z1e2π3i=2e(1+2)π3i=2eπi=2(cosπ+isinπ)=2z3=z2e2π3i=z1e2π3i=2eπie2π3i=2eπ3ie2π3i=2e(1+23)πi=2e(12)π3i=2e5π3i=2eπ3i=2(cos5π3+isin5π3)=2(cosπ3+isinπ3)=2(12i32)=2(cosπ3isinπ3)=1i3so{z1,z2,z3}={1+i3,2,1i3}solutionof(a0)a[z(1+i3)][z(2)][z(1i3)]=0a[(z1)i3][(z1)+i3](z+2)=0a[(z1)2+3](z+2)=0a(z22z+1+3)(z+2)=0a(z22z+4)(z+2)=0a(z32z2+4z+2z24z+8)=0a(z3+8)=0